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ABSTRACT

This report describes the synthesis and identification of mathematical
models which characterize the discrete control behavior of human operators.

This type of behavior occurs in control situations where the human operator must
decide between a small number of alternatives, while generating continuous control
actions at the same time. Models of this type have been proposed previously,
however, systematic techniques for their synthesis and identification have been
lacking. In this report a systematic treatment of discrete control actions is

made possible by the introduction of two new elements which can be used to con-
figure complete human operator models.

Two types of hybrid elements are presented. One accepts continuous inputs
and produces binary outputs, while the other has continuous inputs and produces
continuous outputs under the control of binary signals, Decisions to initiate an
action, throw a switch, or select which switch out of a group of switches should
be operated are described by a Multi-State Decision Element (MSDE). Decisions
concerning the magnitude of a discrete control action, the length of a control interval,
etc. are modeled by a Proportional Decision Element (PDE),

Procedures and digital computer programs for the complete identification
of both types of elements are given.

The Multi-State Decision Element and the Proportional Decision Element
are applied to the modeling of human operators performing compensatory tracking
of gaussian random inputs. Two experiments were performed. The basic control
task was the same in both cases. The controlled element resembled the pitch

axis of an aircraft and was selected in such a manner that pulsatile control



actions were generated by the operators.

In the firstexperiment, the operator viewed a single compensatory oscil-
loscope display, which presented altitude error. A Multi-State Decision Element
was used to model the operators decision to initiate a pulsatile control event.

A Proportional Decision Element was used to model the operators decision as

to the amplitude and width of the pulse event. The elements were completely
identified and resulted in an asynchronous input dependent sampled data model
of the human operator's control actions.

The second experiment was an extension of the first, in which the resem-
blance to an aircraft stick axis was enhanced by adding an attitude display pre-
senting pitch angle. The operators control behavior consisted of pulsatile stick
motions and eye motions between the widely separated attitude and error displays.
A complete human operator model, describing both stick motion and eye motion
was constructed using the two decision elements. The resultant model contains

a deterministic input dependent decision element modeling the operators eye motions.
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CHAPTER |

INTRODUCTION AND BACKGROUND

1. 1 General Statement of The Problem

This report is concerned w-ith the mathematical representa-
tion of a particular class of input-output behavior exhibited by human

operators in a control system. A block diagram of such a system is

seenin Figure 1. 1.

Error Operator's System
e(t) ODutput
c(t)
input
r(t) >L . Human Controllec
1 5 ~
:}@ Display Operator Element Z
- !

If the display device presents both the input, r(t), and the
system output, c(t), to the operator, then the operator's task is
known as pursuit tracking. If the operator observes the difference
between these signals, e(t), then the operator performs compensa-

tory tracking. In compensatory tracking the operator attempts to



reduce the error signal to zero. The mathematical models most
commonly used to represent the human operator in a system such as
Figure 1. 1 are continuous describing functions, synthesized by linear,

constant coefficientdifferential equations and time delay.

Continuous describing function models are suitable for a
wide class of tracking situations. How-ever, they are not w-ell suited
to the description of an important class of control reponses, defined
as “discrete control behavior. ' Discrete control actions are
responses w-hich are composed of a limited set of patterns, such as
those show-n in Figure 1.2. The aircraft throttle position of Figure
1.2(a) may be synthesized from tw-o types of patterns: (a)ramps of
slope k and duration tr and (b) constant positon regions, of amplitude
P, and duration tc. Each of the above patterns is characterized by a
pair of numbers. In general, each pattern of a set comprising a
discrete control action is characterized by an n-tuple of numbers.

Two additional examples are given in Figure 1.2(b) and (c).

Discrete control actions of operators are not limited to
manual manipulation of a control device, but include, for example,
visual scanning between separated display devices, and mental
decisions w-hich affect the process by w-hich the control actions are

generated. Discrete control processes may occur simultaneously
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with continuous control actions, or they may provide supervisory

monitoring and modification of a continuous control action.

The major objective of this report is to nresent an analytical
and experimental study of a new class of mathematical models for
the discrete control behavior of human operators. These models are
synthesized by two general purpose decision elements and their
associated identification algorithms, While certain types of discrete
control behavior have been presented previously, this research is the
first to nresent general nurpose elements which can be combined to
model discrete control behavior, Complete identification nrocedures
for the two elements are described. The purpose of this introductory
chapter is to give a brief description of the background for the inves-
tigation, outline its major objectives, describe the limitations of the
research nrogram and present in detail the organization of the body

of the report.

1.2 Background

The develonment of mathematical models for human operators
began late in World War II when human trackers were widely used in
target tracking for anti-aircraft guns and similar devices. The
first engineering approaches to the problem were reported by

Tustin [53])in England and Ragazzini | 54 in the United States.



Both investigators utilized linear describing functions, thus allow-ing
linear control system techniques to be applied to the analysis and

synthesis of man-machine systems.

1,2. 1 Linear Describing Function Models

A linear describing function model consists of a constant
coefficient differential equation and a time delay, selected such that
the mean squared difference between the model output and the opera-
tor output is minimized, w-hen both are forced w-ith the same input.
Most describing function models in the literature are obtained by
using signals composed of sums of sinusoids w-hich are approximately
gaussian and random appearing. Theparameters o describing function

models are usually obtained by spectral analysis techniques.

Describing functions of the type just described w-ere obtained
by McRuer, Krendel, Graham, et al [21.§ for single axis compensa-
tory tracking tasks. By systematically studying a variety of
controlled elements, input bandwidths, controllers and displays, a
general purpose describing function model w-as obtained. In addition,
a set of rules w-ere formulated to allow the model parameters to be
selected according to the transfer function of the plant, bandwidth of

the input signal and type of controller used. Describing function

models for multi-axis tracking tasks are given by Bekey, et at [41]

and McRuer and Graham [24



Multiple linear regression techniques w-ere utilized by
Wierwille {451 to identify describing function models, while Bekey

and Meissinger{ 264 utilized gradient search parameter identification.

1.2.2 Intermittent Models

In appendix | of his dissertation, Bekey [ 3] presents sub-
stantial evidence for the existence of intermittent behavior in human
operators. The physiology of the visual, cerebral and neuro-
muscular systems supports the hypothesis that human operators
utilize inputs intermittently. It has been said that the pow-er spec-
trum of the difference between the output of a linear describing
function model and the output of an intermittent operator w-ould con-
tain easily recognized peaks. These peaks would be the result of
periodicities caused by the sampling behavior of the operator. A
careful study of the power spectrum of this difference by McRuer
[25] revealed no significant periodicities. Following this, Biddle,
et al [57] found that random perturbations of the periodic sampling
interval caused the peaks in the power spectrum due to sampling to

disappear.

Sampling human operator models offer many advantages over
continuous models. These advantages are offset by the lack of suit-
able identification techniques, An input dependent sampling model of

a human operator is synthesized in Chapter 5 below-. The



identification of the input dependent sampling behavior w-as possible
only because the operator's output consisted of pulsatile control
motions. The application of the discrete elements to continuous out-

put human operator models remains tobe carried out.

1.3 Discrete Control Behavior In Human Operators

Three examples of discrete control behavior were given in
Figure 1.2. Numerous examples of discrete control behavior in
human operators are available in the literature. The role played by
models for this type of behavior may be illustrated by considering

tw-0 examples in detail.

Chalk [ 67 recorded the control actions of pilots performing
instrument landings in a variable stability T-33 aircraft, A typical
time history of elevator deflection, aileron deflection, rudder de-
flection and throttle oosition is seen in Figure 1.3. A typicalaircraft
instrument panelis shown in Figure 1.4. In order to perform the
desired landing maneuver satisfactorily, the pilot must scan betw-een
a number of separated instruments, This is certainly discrete
human operator behavior. The elevator deflection time history
appears to be continuous, w-hile the aileron and rudder deflection

time histories are quite pulsatile. The throttle position is
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incremented ordecremented at irregular intervals. The last three

control actions may be described as discrete control actions,

A human operator model which is to reflect both the continuous
elevator control and the discrete control of the aileron, rudder,
throttle, and visual scanning mechanism would be complicated indeed.
In the face of this complexity and lacking systematic techniques for
the synthesis and identification of discrete models, two courses of
action have been followed. Some investigators neglected the scanning
behavior and assumed all of the inputs w-ere utilized continuously, or
neglected all but one input entirely. Other investigators, notably
Senders P47}, concentrated on the visual scanning behavior of opera-
tors, neglecting entirely any input-output behavior. In both cases
satisfactory models for behavior of nilots performing instrument
maneuvers were obtained. The models were, however, limited to

representing only Dart of the operator's control actions.

As another example, consider the task of driving an automo-
bile dow-n a winding road. The driver has available not only the
present input (the portion of road immediately ahead of the car) but a
substantial Dart of the future input (the road ahead of the car). The
availability of Preview- information about the input signal makes this

amore comnlex task to model than a standard tracking task. An



11
investigation was conducted by Wierwille [47] in order to obtain
information about the way human operators control an automobile
at high speed. A typical time history of steering wheel Position is
found in Figure 1.5. The steering wheel vosition is strongly pulsa-
tile and may be classed as discrete control behavior. The model
selected by Wierw-ille, as best suited to the objectives of his study,
was a linear describing function. The output of his model is also
seen in Figure 1.5. The model clearly reflects the basic control
actions of the onerator, but does not produce pulsatile control

actions.

In the examnles above, the discrete control behavior has been
neglected because, in part, generalized techniques for the synthesis
and identification of discrete human onerator models w-ere not avail-
able, A number of investigations, in which discrete behavior was
modeled, will be discussed in detail in the next chanter, In each
case, the model develoned w-as annlicable only to the narticular

experimental situation.

1.4 Objectives Of The Study

The major objective of this study is the development of
systematic techniques for the synthesis and identification of mathe-

matical models for discrete human ovnerator behavior. This
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objective can be restated in terms of more specific goals as

follows:

a)

b)

- ¢)

d)

e)

f)

Examine the literature on human onerator
modeling and isolate the types of discrete
control behavior observed.

Analyze the results of part (a)and determine
specifications for general structure discrete
model elements.

Formulate mathematical descriptions of the
discrete model elements,

Develop identification procedures for the
discrete elements

Perform experimental studies to evaluate the

effectiveness and utility of the discrete elements,

On the basis of the experimental studies,

propose extensions of the study.

13

The study nroceeds from background to analytical investigation, and

finally to experimental verification.

1.5 Limitations Of The Study

A number of restrictions apply to the broad abjectives stated

above. The restrictions fall into two categories:

experiments and those affecting the mathematical models.

those affecting the
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1. 5,1 Restrictions On The Experiments

The experiments described below- were limited to compensa-
tory tracking of single axis systems. Further, the dynamics of the
controlled elements elicited pulsatile control actions from the overa-

tors.

The experiments w-ere based on results obtained from two
subjects. These restrictions reflect on the experimental results and
not on the two decision elements nresented. The intention of the
experiments IS to demonstrate the applicability of the decision
elements to the modeling of discrete human operator behavior. The
models obtained from the experiments are representative of one,
well trained onerator and much work remains to establish the

significance of the numerical results,

1,5. 2 Restrictions Of The Mathematical Models

The decision elements represented below are not primarily

suited to the representation of continuous human onerator behavior.

Examples are taken from the literature in which discrete
control actions effect the characteristics of an operator's continuous
control behavior. The modeling of such behavior by discrete decision
elements is described, but no attempts are made to synthesize com-

plete human operator models.
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1. 6 Organization Of The Dissertation

The dissertation is organized into seven chapters, The
present chapter has indicated the major objectives of the study, the
restrictions nlaced on these objectives, and presented the background

which motivated the study.

Chapter 2 considers the oresent status of discrete human
operator models, Requirements and desirable features of elements
which reflect the discrete control behavior of human operators are
presented. Based on these, two decision elements, the Proportional
Decision Element (PDE) and the Multi-State Decision Element
(MSDE) are developed. Examples from the literature are considered
in detail and the application of the decision elements to the synthesis

of models is described,

Chapter 3 formalizes the verbal, block diagram descriptions
of the PDE and MSDE developed in Chapter 2, by defining the input-

output relationships mathematically.

Chapter 4 presents identification algorithms for the PDE and
the MSDE. The algorithms are easily mechanized on general pur-

pose digital computers and hybrid computers.

Chapter 5 describes the complete synthesis and identification

of a model for a human operator performing compensatory single
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axis tracking of gaussian random signals. The controlled element is
such that the operator elects to generate oulsatile control actions.
The resultant model contains an input monitoring decision element
which controls sample and holds. The result is an input dependent

sampling model for a human onerator.

Chapter 6 is an extension of the work of Chapter 5, The con-
trolled element of Chapter 5 resembled an aircraft pitch axis. The
input to the controlled element was elevator nosition and the output
w-as altitude. A second disnlay was added presenting pitch angle,
simulating an attitude display, The geometry of the task was
selected to simulate a terrain avoidance problem. The controlled
elements w-ere such that the operator again elected to produce
pulsatile control actions. A complete human operator model w-as
synthesized and identified. The model contains a deterministic
visual scanning and signal processing system in addition to the pulse

generation system.

Chapter 7 summarizes the results of the study and presents

recommendations for future work.

1.7 Applications Of The Dissertation

There are an increasing number of investigations described

in the literature on human operator modeling which delve into the
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detailed structure of human operators. Models are being studied
which probe into the operator's ability to recognize plant changes
and adapt to them. It is hoped that this dissertation will be a con-
tribution to the scientific goal of furthering the understanding of
human operator behavior by providing tools for the analysis of dis-
crete human operator behavior. Further, this study is an example
of a methodology for the development of mathematical models which

may find increasing usefulness in the future.



CHAPTER 2
AN ANALYSIS AND REVIEW OF DISCRETE CONTROL

BEHAVIOR IN HUMAN OPERATORS

2. 1 Classes Of Discrete Control Behavior

The synthesis of mathematical models of human operators in
closed loop control systems is based on the assumption that a causal
relationship exists between the sensory stimuli available to the
operator and the control actions which result from muscle flexures.
The sensory stimuli are usually continuous functions of time. Some
examples of discrete control actions were presented in the preceding
chapter. These were pulsatile and incremental control actions and
visual scanning betw-een separate displays. A review of the litera-
ture on human operator modeling reveals three classes of discrete
behavior in human operators:

1. Visual scanning betw-een separated display devices.

2. Pulsatile or incremental control actions.

3. Detection and switching.

The ability of human operators to adapt to sudden changes in

almost any portion of the control system is well known. The

18
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adaptation to these sudden changes in environment requires the opera-

tor to detect the change and modify his control strategy accordingly.

2.2 Requirements For Models Of Discrete Control Behavior

From the descriptions given above, it is not clear what the
output of a discrete control element should be. In the case of visual
scanning the model must indicate w-hich of the available displays is to
be viewed and for how long. Alternatively the model can point to the
next display to be viewed and produce an output when it is time to
view- another display. In both cases, the model must select betw-een
possible alternative decisions. This may be achieved if the model
generates N binary signals on separate output lines, corresponding to
N possible alternative decisions. Since only one alternative can be
selected at a time, only one output at a time can be true. If the deci-
sions are considered to be discrete operator states then this may be
described as a multi-state decision. The inputs to the decision
model are continuous functions of time and the output is a set of
binary signals, only one of which can be true at a time. A multi-
state decision process also occurs in the other classes of discrete
control behavior. In generating a pulsatile or incremental control
action the operator must decide w-hen to start the control action and

what polarity to make it. The detection of a sudden plant change is
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similarly a multi-state decision. In the multiple display case, there
are many possible alternative states. In the last two cases, only
two output states are required, In the case of pulsatile control
actions the operator must select a pulse amplitude and a pulse width.
This may be viewed as a multi-state decision in w-hich the states
represent quantized pulse amplitudes or widths. If the human opera-
tor is provided w-ith a continuous control device, the the number of
guantization states required to adequately describe the output may
become quite large. A more convenient approach is to consider the
output of the decision model to be a number, the magnitude of w-hich
determines the amplitude or width of the control action. Assume
that some functional relationship exists betw-een the displayed signals
and the pulse amplitude, for example. This may be modeled by
sampling and holding the transient signals and then computing the
pulse amplitude from the known functional relationship. This re-
guires a control signal to operate the sample and hold device. The
control signal is a binary, on-off signal and may be obtained from

a multi-state process.

Thus far, two types of decision processes have been isolated.
These are the multi-state decision and the function generation deci-
sion. The latter is called a decision as the output is a discrete

quantity and not a continuous function of the inputs.
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2.3 Elements For Discrete Control Models

Tw-0 general purpose elements can be constructed from these

verbal descriptions.

2. 3. 1 Multi-State Decisions

Multi State decisions can be generated by adapting pattern
recognition techniques [13]. A number of hypersurfaces are gene-
rated in the space formed by the linear combinations of the input
signals. A threshold element determines the position of the instan-
taneous input vector relative to the hypersurfaces. A boolean
function of the outputs of the threhold elements determines which of
the output lines is to be true. The result is a Multi-State Decision

Element (herein after denoted by MSDE).

2. 3.2 Function Generation Decisions

The function generation decision process may be modeled by
sample and holds and a function computer. For convenience in
modeling, the function is restricted to linear combinations of the
sampled and held signals. The result is called a Proportional

Decision Element (herein after denoted as PDE).
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2. 3. 3 Complete Models of Discrete Human Operator Behavior

It w-ill be seen .below that the MSDE and the PDE are sufficient
to describe a wide variety of discrete human operator behavior. By
properly selecting the structure of the tw-0 elements it is possible to

develop easily mechanized systematic identification algorithms.

By utilizing an MSDE to control the sample and hold operation
in the PDE, a very convenient identification procedure results. This
procedure has the effect of uncoupling the timing of the decision

portion of the model from the function generation portion.

2.4 The Status Of Models For Discrete Control Behavior In Human

Operators

No attempt will be made here to consider the large body of
work which is concerned w-ith the continuous input-output behavior of
human operators. That this study is possible at all is due, in part,
to the fact that the transfer characteristics of human operators in
single axis tasks are so w-ell understood. This allows attention to be
concentrated here on a rather specific type of human operator

behavior.

2. 4. 1 Visual Scanning Models

In a very comprehensive manner, Senders, Elkind, et al B47]

conducted experiments concerned w-ith the visual scanning behavior
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of operators. Unfortunately, these studies are not applicable to the

deterministic modeling of human operators. The experimental tasks
involved either monitoring of uncorrelated displays for limit condi-

tions or pilot eye motions during instrument flight in which only the

pilot's eye motions were recorded. It would be interesting to specu-
late on the status of deterministic scanning models had the actual

instrument readings been recorded simultaneously.

The models treated the human operator as a single channel
device with the displays queueing up for attention. Probabilities
w-ere used to determine which display deserved attention next. The
probabilities w-ere computed from long term properties of the dis-
played signals, means, higher moments and bandw-idth. The models

do not utilize the transient data displayed.

The recent literature on human operator modeling contains an

increasing number of investigations involving multi-axis tasks.

Almost all of the investigators deliberately suppress visual
scanning by displaying all signals on a single integrated display. In
a study by Levison and Elkind {19} an uncoordinated tw-0 axis tracking
task with separate displays w-as identified assuming eye position to be
known. No attempt w-as made to synthesize a model for the operator's

scanning behavior. In any case, the displays presented uncorrelated
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signals, and there is no reason to assume that the scanning behavior

would be deterministic.

The lack of experiments in w-hich separated displays present
correlated signals, motivated the experiment described in Chapter 6.
An experiment was performed in which two separated displays pre-
sented aircraft attitude and altitude to an operator who controlled the
elevator position in a pitch axis aircraft simulation. A deterministic

model for the operator's scanning behavior is synthesized.

2.4.2 Pulsatile And Incremental Control Behavior

In 1964 Knoop [ 10} developed a continuous non-linear human
operator model w-hich generated incremental control actions. The
non-linearities simulated known non-linear characteristics of human
operators. The identification procedures did not utilize the opera-
tor's input-output behavior, but depended on optimal control consider -
ations for some parameters while others w-ere manually adjusted to

produce an adequate match w-ith the experimental data.

In a similar study, Gould [ 11} utilized a force computer to
generate incremental control actions. Gould's basic human operator
model is reproduced in Figure 2. 1. The output of the Force Program
Element is an incremental change in controller position. The magni-

tude of the change is determined by the error and the error rate.



25

pInon JO [9PON 2391281 - [ "¢ TINDIA

4966141
woiboud
89404
Eyounixn ..___l
_ ployse.y L
Pl
woJibou
juoid d L
: 990404 t|a
Ior 1o I
adhy

juoid




26

A threshold element reflects the operator's error dead zone. A
bang-bang element triggers a control action when the predicted error

exceeds a threshold.

No systematic identification procedures are presented and the
model is not easily adapted to other classes of discrete control

behavior.

An experiment quite similar to that of Gould is presented in
Chapter 5. The operator produces pulsatile rather than incremental
control actions. The non-linear elements are combined with the
force computer and the complete model synthesized using the dis-

crete elements developed in this dissertation.

A model for pulsatile control actions was proposed by Bekey
and Angel [ 4 J. The model structure is developed using asynchro-
nous finite state automata theory. Based on threshold decisions, a
single pulse event (rate correction) or a double pulse event (position
correction) is generated. The resultant model structure is quite
similar to the model presented in Chapter 5 of this study, No attempt

w-as made to identify models of human operators.

2. 4. 3 Detection and Switching

When human operators are given differnt plants to control,

they select different control policies. For a controlled element of
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the form
KZ

G(s) = K, + . (2.1)

Gould found that the operator's output could be classified into two
types of behavior. The type of behavior that predominated depended
on the values of K1 and K2, A series of experiments in which K1 and
K2 were changed systematically was used to determine the parameters
of a pattern recognition element. The parameters of the recognition
element were obtained by plotting the two types of behavior on the
Kl’ K2 plane and visually selecting a decision surface that separated
the points corresponding to the two types of output behavior. If the
model contains a subsystem that estimates K1 and K2 then the
appropriate force program can be selected.

A more general adaptive switching model is described by
Miller and Elkind [9 7. Miller and Elkind studied the performance
of human operators in compensatory manual tracking with sudden
plant changes. The plant transitions involved changing the sign

and/ or the magnitude of the plant gain. The tracking task is repro-

duced from Ref. !9 ] in Figure 2.2.

Only three possible plant changes could be made from any
given starting or base plant. The operator w-as required to nerform

the following discrete functions:
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Figure 2.2 Tracking Task of Elkind and Miller



29
1) Detect the nlant change

2) Determine which of the three possible plants had

been selected

3) Modify his performance characteristic to match

the new plant

Of the three types of discrete action, the first w-ill best suit

the purpose of this discussion.

The experimental data included the following:

a) The inputs e(t) and €(t) to the human operator

b) The human operator output

c) A binary signal controlled by the operator that
signals his first recognition of a plant change

d) The binary control signal that caused the plant change

The model proposed by Miller and Elkind is shown in Figure
2.3. Part A of the model detects the plant transition and initiates
action in Parts B and C. Part B uses trial and error sw-itching of

dynamic elements to identify the new plant.

Based on the results of the plant identification, a new human
operator describing function is selected to provide satisfactory

tracking performance.
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2.4.2 The Detection Model

L4

The detection model may be more easily studied from

Figure 2.4 which is redrawn and labeled version of Figure 2.3

d e(t)
— dt

e(t)

Ly H/O

ANE —mmm 3| .
Decision Plant

Element Change

AC

The time of the plant change is easily determined, as is the
time at w-hich the linear describing function of the operator changed,
This may be seen in Figure 2.5 where the operator gain is plotted

as a function of time during a plant transition. The change in the
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describing function leads the conscious recognition of the change by

100 to 300 milliseconds.

If the values of AE and AC just after plant transition are
plotted, a linear relationship is found, Figure 2.6. This curve can
be used as a decision surface, to detect plant changes. If particular
values of AE and AC lie below- the line, the plant has changed. If
they are above it, then no plant change has occurred. There is the
usual dead space around the origin where the operator elects to

make no decisions.

Miller and Elkind obtained the coefficients of the detection
model from the graph in Figure 2.6. The points plotted were
obtained by recording AE and AC one "reactiontime' before the
overt operator action. No attempt was made to adjust the model

coefficients, or to identify the operator's reaction time.

In a different approach to the same problem, Weir and Phatak
[43] devoted their attention to the switching behavior of the operator
during sudden plant transitions. Their model contained three phases:
(1) retention, in which the operators describing function remains
unchanged, (2) optimal control, in which the operator acts as a time
optimal bang-bang control system, and (3) adjustment to steady state

tracking with the new plant. Complete models were obtained for
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operators during each phase, however, no attempt w-as made to

synthesize a detection and sequencing system.

2.4. 4 Summary Of The Literature Review-

The characteristics of discrete control behavior, found in a
number of experiments have been reviewed. In the next chapter the
structure of two general purpose decision elements (the MSDE and
PDE) for modeling discrete control responses is presented. It w-ill
be show-n that the resulting elements are sufficiently general as to
include all of the types of behavior observed in the studies reviewed

in this chapter.



CHAPTER 3

BLOCK STRUCTURED DECISION ELEMENTS

3.1 General Features Of Decision Elements

This chapter presents two types of decision elements in a
block diagram form suitable for configuring models of discrete human
operator behavior. Subsequent chapters will describe systematic
identification schemes and typical applications of the decision

elements.

The input-output relationships of the decision elements 'are
sufficiently general as to allow- a wide variety of discrete human
operator behavior to be modeled. It is hoped that the generality of
the blocks w-ill, combined with their identification schemes, allow-
discrete behavior to be modeled in the same manner that continuous
operator behavior is modeled by describing functions, and pow-er

spectral density measurements.

The first decision element described below- is the Multi-State
Decision Element (MSDE). The inputs to the element are continuous
time varying signals and the outputs are binary signals. The MSDE
is intended to model operator decisions betw-een discrete alternatives,

for example: swe-itch closures, eye motions betw-een separate

36
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displays, decisions to initiate discrete or pulsatile control actions,
etc. If the binary outputs are view-ed as the states of a digital regis-
ter, then each possible decision of the operator can be decoded from
the contents of the register. Inits simplest form, the MSDE can be

viewed as a switching locus generator.

The second element described below- is the Proportional De-
cicion Element (PDE). The inputs to the PDE are continuous time
varying signals and one or more binary control signals. The output
of the PDE is a scalar function of the input signals at a time deter-
mined by a binary control signal, the scalar output appears at a time
determined by the same or another binary control signal. The binary
control signals may be derived from a timing circuit, or in most
cases, from an MSDE. The PDE is intended to model the propor-
tional or function generation behavior of human operators. Such
behavior might include: the selection of the amplitude and w-idth of a
pulsatile control action, the magnitude of a step change in throttle
position in an aircraft, etc. An MSDE decides when to make the
change and the direction of the change and a PDE determines the

amount of the change.

3.2 The Multi-State Decision Element MSDE

Based on the analysis in the previous chapter, it can be

assumed that a multi-state decision process is utilized by human
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operators, when a decision must be made betw-een distinct alterna-

tives.

3. 2. 1 Definition of the Basic MSDE

An input-output relaticnship for a general multi-state decision
element (henceforth designated MSDE) may be based on the assump-
tion that portions of the input space formed by the linear combinations
of the signals applied to the MSDE are associated with desired binary

output states:

h =B (T(f(x)) ) (3.1)

where X is an n vector of time varying input signals, f(x) is an m
vector of time varying functions of the input vector x, forming deci-
sion surfaces in the input space, T is an m vector of time varying
binary signals resulting from a threshold operation on the vector

f(x), B is a p vector of boolean functions of the binary signals T(f)
and finally, his a p vector of binary output signals, only one of which
may be true at a time. This relationship is summarized in Figure

3.1.

The components of the input vector X, may be any signals
which enter into a causal relationship with the binary output vector h.

These signals may be deterministic signals from the system, random
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Figure 3. 1 The General Multi-State Decision Element (MSDE)

signals, past samples of the signals, time delayed signals, human

operator outputs, etc.

The signals may be continuous analog signals,

discrete signals, outputs of hold devices, binary signals and encoded

continuous signals.

The outputs of the MSDE are binary signals and

for convenience, it may be assumed that one and only one at a time
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may be true. Each component of the output vector, h, corresponds

to a possible state in the system being modeled.

The MSDE is a pure combinatorial network w-ith no direct
feedback paths. |If storage is a necessary part of the process being
modeled, it must be obtained by including delayed or sampled and
held signals as additional components of the input vector. Theoreti-
cally the identification process described below allows theinput vector
to contain an unlimited number of components. Practically, the time
required to complete the identification depends on the number of

components.

3.2. 2 Extension Of The MSDE To Include Time Delay

In order to synthesize and identify models of human operators
w-hich reflect discrete decision making behavior, the operator's
discrete action must be measurable. That is, it must be possible to
measure or infer from observable signals the exact time the operator
changed state and the state arrived at. Decisions of this type will be
called overt or measurable decisions. In many human operator
modeling situations, the model decision must precede the overt
action, allowing the model to simulate reaction time and possibly
computational or thought processes. The MSDE described by equation

3.1 and shown in Figure 3, 1is suitable for the development of models
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w-hich produce a change in state at the same time that the human

operator executed his discrete act.

The MSDE is easily modified to reflect this behavior by re-
defining the input-output equation. The output of the MSDE w-as

defined as:

h =B [ T(x)] (3.2)

and a delayed MSDE output may be defined:

b=e¢ °h (3.3)

where T is the time delay required between the covert or inaccess-
ible human operator decision and the overt decision T seconds later.
The general MSDE shown in Figure 3.1 is redrawn in Figure 3.2 to

reflect this additional requirement.

The direct output vector, h may be used to trigger input
dependent sampling devices, initiate computational processes, etc.

The delayed output b may be used to initiate the control action.

If the decision element is used to model an overt control
action, the time delay element is not needed. This might be the case

if the actions being modeled were: operation of a pushbutton, switch
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Figure 3.2 Modified MSDE

closures, eye motions, etc. For these actions there is no need to

separate the covert decision from the overt act.

3.2. 3 Complete Structure Of The MSDE

The input vector traces out an event trajectory in the space
formed by linear combinations of the components of the input vector.
The position of the event trajectory relative to the decision surfaces

of the MSDE determines which of the p output lines is to be true.
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The proper output is obtained by positioning hypersurfaces in
the input space such that the event points corresponding to a particu-

lar desired output state are separated from all other event points.

If hyperplanes are used to perform the separation, then a
rather simple mechanization is possible, and the fj become

n

=X ] =
fj (x) 2 ajixi + ao j=1,2,...m (3. 4)

If an additional component, X is included in the input vector

such that
X =1
o
then
n
= Z 1 =
fj (x) i:oaijxi j=1,2, ...m (3.5)

The threshold operator is defined by

5 for y >o
T(y) = {0 for y £o (3.6)
and
n
T(f.(x)) = T(Z a_x) (3.7)
i izo ij i

If T(f(x)) is 1 (true) the event point is above the hyperplane,
if T(f(x)) is 0 (false)then it is below the hyperplane. By utilizing a

sufficient number of hyperplanes and properly selecting the
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boolean function, B it is possible to generate the decision surfaces
required to produce the desired outputs. The complete mechanization

of the MSDE is show-n in Figure 3. 3.

X A §31% ..

X173 6 gjoxi _9'_—1-__]’%-; B(T(£(x)))

o]
o
A 74

Figure 3.3 Complete MSDE
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3.2.4 Application Of The MSDE To The Generation Of Complex

Decision Surfaces

Although the hypersurfaces, generated within the MSDE, are
planes in the input space, they may be made to represent complex
surfaces by properly selecting the components of the input vectors
and the boolean functions, B. A rather simple phase plane diagram

is shown in Figure 3. 4. The MSDE is to determine whether the

event trajectory is in region ap, a,, Or ag, and produce corresponding
output states.
.2 y
- - -
Parabola 1
\
\
| .
T y
1
{
/
Ve
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Figure 3.4 A Decision Surface Example
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If an input vector is formed from

X =1

O

X1=Y

xz :}} (3.8)
W =P

3 _Y

X = 2

4_y

then hyperplanes in the input space may be defined as

fl(x) =X,
f2(x) =X,
fS(X): X4 t 5x1 +25x0 (3.9)

f4(X): X " 5x1 +25x0

2
f5-x3tx4-r X

The resultant threshold functions are tabulated in Table 3. 1.
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Table 3,1 Threshold Functions For the Decision Surface Example

1

Threshold Geometric Significance
. Output
Functions of output
1 in the right half plane
T(£, (x))
0 in the left half plane
1 upper half plane
T(£, (x))
0 lower half plane
1 outside parbola 1
T(f,(x)
0 inside parabola 1
1 outside parabola 2
(£, (x))
0 inside parabola 2
1 outside circle
T(fg (x))
0 inside circle

It is now possible to determine B so that three binary output

17 8o

2 3

indicated on Figure 3.4.

a, = lrig, 6N ¢ L1, (]

+ [T, () ]« [T, ()] - [T, () ]

is written in the same manner,

and

and are generated, corresponding to the regions
g p g g

(3.10)
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a, = [T(fs(x))]’ (3.11)

where the primes indicate logical complement.

Thus hyperplanes in the input space may represent complex
decision surfaces in the state variable space of the system. The

complete MSDE for this example is shown in Figure 3. 5.

In more complete examples, below, the MSDE will be applied
to modeling of the human operator’s decision to initiate pulsatile
control actions. In one of the examples it was possible to determine
the structure of the decision surfaces from a priori knowledge. The
identification consisted of testing and adjusting the free coefficients
of the MSDE until an optimum fit was obtained between the models
output and the experimental data. In a second example, it was not
possible to make any reasonable extimates of the MSDE structure
and the identification procedure required a great deal more effort

and computer time.

3. 2. 5 Relationship Between The MSDE And Pattern Recognition

Devices

There is a definite relationship betw-een the structure and
mechanization of the MSDE and binary pattern recognition devices.
The basic concept is the same in both devices, the partitioning of the

input space by hyperplanes to establish decision surfaces. In binary
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pattern recognition devices, the input vector contains only binary
signals, and the resultant input space is a binary space. The
mechanization of the tw-o devices are identical, their difference lies

in the use of only binary inputs in pattern recognizers.

The advantages of the binary recognition device are the ease
of mechanization, and the convenient identification algorithms. The
disadvantages in their application to human operator modeling result
from the need to encode the input signals and the fact that the re-
sultant decision element offers no insight into the process by w-hich

the decisions were made.

3.3 The Proportional Decision Element (PDE)

Human operators utilize proportional decisions while perform-
ing manual control when they must decide how large, how long or how-
fast to make a control action. The proportional decision element
(henceforth to be denoted as PDE) combines function generators,
hold elements and logical structure to produce the discrete decision.
This yields a block element which is easily utilized in complete
system diagrams to configure human operator models. The output
of a PDE may be used to model many types of human operator be-
havior: amplitude and w-idth of a pulsatile stick motion, time a

button or bang-bang controller is closed, etc.
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3. 3. 1 Definition Of A PDE

The output of the PDE is a scalar signal obtained by linearly

combining the input signals to the PDE at some time, determined by
an applied binary signal C:
x =x(t)] C ‘ (3.12)
where x (t)is an r vector the components of which are time varying
signals applied to the input terminals of the PDE. The input vector
x(t) is sampled and held at the time C becomes true. The scalar

output, yl, of the PDE is obtained from

ot

y; -2 x +a_ (3.13)

where a is an r vector containing arbitrary real coefficients and ao is
an arbitrary real constant. If an additional component X is added

to the input vector x such that

x =1 (3. 14)

then the constant ao, may be included in the coefficient vector, a

and

y, =o' (3. 15)
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The value of y1 is held at the output until C, becomes true
again, causing a new- value of y1 to be generated. In some modeling

situations an additional delay, T, is required to simulate the reaction

and/or computation time of the operator.
Y, = € (a'x ) (3. 16)
The input-output relationship is summarized in Figure 3. 6.

As with the MSDE, the input vector may contain measure-
ments from the system being modeled, the human operator's inputs
and outputs, random signals, binary signals, outputs of filters, time

delays and hold devices.

The PDE may be interpreted geometrically by considering
the r t 1 dimensional space formed by the input vector x and the

scalar outputy. A hyperplane in this space w-ould take the form:
r
y =¥ ax (3.17)
which is just the equation of the function generation portion of the PDE
y =a'x (3.18)

The identification problem consists of finding the best fit
hyperplane to the event points. An event point is determined by the
input vector at the time the signal C becomes true, and the corres-

ponding value of the desired output of the PDE.
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3.3.2 Application Of The PDE To The Generation Of Complex

Functions

The use of hyperplanes in the space formed by the input vector
and the scalar output is not restrictive. [ many functions of a single
var able, w, are included in the input vector to the PDE, then a
hypersurface is formed in the lower dimensional space of that vari-
able. Consider the following example in w-hich a 6 dimensional
hyperplane is equivalent to a two dimensional curve. Let x be the
input vector to a PDE the components of w-hich are functions of a

single time varying variable, w(t):

X =1

(0]
X1:\N-

2

X2—VV-
X3:W3 (3.19)
X :W4

4
X :W5

5

The six dimensional hyperplane generated by the PDE is:

y=a X, t alxlt a2x2t a3x3t a, X, t a X, (3.20)

where y is the scalar output of the PDE, which reduces to a fifth

order polynomial in the two dimensional space formed by w and y:
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2 3 4 5
y_a0+a1w+a2w tasw taw- t agw (3.21)

Higher dimensional surfaces can be obtained by forming the

input vector x from the terms of a multi dimensional power series,

e. g.

X =1
(0]

X1:W

X2:Z
X :W2
3

X :Z2
4

(3.22)

X5:WZ

X -'--‘VV3
6

X =Z3
7

X :WZZ
8

X :WZZ
9

As many terms may be included as are needed to fit the

event points to the accuracy desired.

The advantage in using linear combinations of the components
of the input vector lies in the simplicity of the required identification
scheme. The identification scheme described in the next chapter
can be used to determine the coefficient vector, a, for input vectors

of considerable length.
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3.3.3 Non-linear PDE's

To represent a three dimensional surface with the PDE re-
guires the terms shown in equation 3.22. The formation of the input
vector would require a large number of multiplications. It is not
reasonable to presume that the human operator carries out all of

this arithmetic.

The operator may be capable of pattern recognition or some
other complex process which would require a high order hypersur-
face in the PDE. This difficulty, resulting from the structure of the
PDE, may be overcome by allow-ing models in which the coefficient

vector, a, enters non-linearly. For example,

y = (a'x)a (3.23)

w-here the vector a and the scalar @are to be determined. The advan-
tage in the non-linear PDE is that complex surfaces can be generated
in the state space of the system without introducing a large number

of non-linear elements into the model. Such a PDE is shown in

Figure 3. 7.

Only one non-linear element is required. The disadvantage
is that the identification is much more difficult and the resultant

coefficients need not be unique or even the best available, as their
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Figure 3.7 A Non-Linear PDE

computation depends on search procedures rather than direct
computation.

Once a linear PDE has been identified, snother identification
procedure could be used to fit the surface w-ith a non-linear PDE.
For most human operator modeling, the linear PDE is sufficient

and no attempt will be made here to identify non-linear PDE's.



CHAPTER 4

IDENTIFICATION TECHNIQUES

4, 1 Introduction

This chapter presents identification techniques applicable to
general purpose digital or hybrid computers. The procedures are
easily prepared as standard programs which might encourage the
utilization of the block structured PDE and MSDE elements to

describe humran operator behavior.

4. 2 ldentification Of The PDE

The equations defining the PDE were presented in the pre-

vious chapter. They were

*
X :x(t)] C (4. 1)

*
where X is an r vector the components of which are the values of

x(t) at the time C becomes true, The PDE may generate two outputs:

I *
Y =ax (4.2)

and

y, = e Sa'x) (4. 3)

where y1 and y2 are scalars, ais an r vector of unknown coefficients,

and T Is an unknown time delay.
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It is assumed in the following that the input vector has been
selected and that all of the components of the input vector are known

functions of time,

The identification of a model is accomplished by adjusting the
parameters of the model until a criterion function is minimized.
The procedure is shown schematically in Figure 4. 1. It is assumed
that the time histories of the r components of the input vector are
known. The actual outputs z(t,l) must be known, as well as the times
at which the new- values appeared, t.l, i=1, 2, --N. The binary
control signal C is assumed to be known. The criterion function
corresponding to particular values of a and T may be computed. The

next section describes the parameter selection algorithm.

4.2. 1 The ldentification Algorithm

The values of Z(ti) and times at which they appear, t,, must
1
A
be known. For convenience define z to be a vector the components

of which are the N discrete values:

Iz\ = (z(tl), z(tz). .. z(,tn)) (4. 4)

A
Similarly, lety be an N vector, the components of w-hich are the N
discrete outputs of the model. Assume that the process being

modeled is such that T = 0, i.e. the output and sampling operation
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Figure 4.1 The PDE Identification Problem

are simultaneous. This restriction will be removed later. The

model output may be written as:

» o x%a (4.5)

* -
where X is an NXxr matrix, the i-th row of which is the transpose of

sk
the sampled input vector x at the time ti:



]

xo(tl) xl(tl) xz(tl) .

X = %5(t) xq(t)) xz(tz).

[Xo(‘IN) xl(tN) xz(tN) )
or

.

x%tl)

" x'(tz)

R

a model error vector may be defined as

A A
E=z -y

and a suitable criterion function is:

/

p=E E

from equation 4. 8

) A A
p-C_NE- D

A
and substituting for y from equation 4. 5

¢ =(§ - X*a)' (\z— X*a)

. xr(tl)

k.
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(4. 6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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multiplying out

A, A - % % %, %k
p=zlz-a’X?z2-2X a+a’X?’X a (4.11)

since @ is a scalar, each term of this equation is also a scalar. By

symmetry
#, A A, %
A/ X4z =2/X a (4.12)
Thus # may be written as
* « *
p=z/z -2a’X“zta’X /X a (4.13)

The model error vector is minimized by minimizing the
scalar criterion function. Since # is quadratic in the parameter
vector, a, it is unimodal and by construction, its stationary point

is a minimum. The gradient of ¢ is
*, A hp K
Vo=-2X42+2X1Xa (4. 14)
The stationary point of # is obtained from

\p=0 (4. 15)
which yields
* % *, A
X4X a=X "z (4. 16)

finally, solving for the parameter vector a:
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*
%* - %
a=[X’x ] Lx* 4 (4. 17)
where []'1 indicates'matrix inversion.
If
*, %
det[(X 77X ] #£0 (4. 18)

then the parameter vector, a, which results is unique. Since the
criterion function w-as based on the squared model error, the para-

meter vector, a, minimizes the sum of the squared errors.

The optimization procedure developed above is equivalent to
least squares regression. Since the coefficients, a, enter linearly,
the identification may also be viewed as the solution of an over-

specified set of simultaneous equations

=X a (4. 19)

which results in N equations in r unknowns.

4.2. 2 Interpretation Of Results And Graphical Aids

The PDE may be viewed as a multi-dimensional function
generator. If the input vector is formed by algebraic operations on
two signals, say ql(t) and qz(t), then the N event points
(z(ti), ql(ti)’ qz(ti)) may be plotted. The model event points gene-

rated by the PDE (y(t_l), ql(tl), qZ(ti)) may be plotted on the same
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co-ordinate system, or the surface generated by the PDE can be

obtained by systemmatically applying values of q1 and q2 to the PDE.

Tw-o dimensional plots of this type are easily obtained. With
suitable mechanical aids, three dimensional plots can be made. By
viewing these plots, one can locate areas of poor model performance
or gain insight into the original process being modeled. In the for-
mer case, the input vector can be modified and a new computational

cycle carried out.

Beyond three dimensions the plotting process becomes
laborious. In these cases, some other form of graphical aid is

necessary.

The numerical value of the criterion function may be used to
measure the effectiveness of different input vectors. The same

information may be presented in a two dimensional plot of Q(a

)

optimal

. A S .
against z. If the model were perfect the criterion function, ¢ would

. A
be zero and the points (3Ar(a I), z) would line on a straight line of

optima
unity slope. Systematic model errors w-ill appear as groups of
points off this straight line. In many cases the necessary additions

to or modification of the input vector can be determined from the

Q/, lz\ plot.
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The procedure developed above can be mechanized on any
general purpose digital computer. The memory size of the computer
places constraints on the dimensionality of the arays, in particular
X*. With even moderate size computers (i.e. , the IBM 1620, 1401)
it is possible to handle 70 equations in 5 unknowns. If large digital
processors are available, the number of equations and unknow-ns that
may be treated are practically unlimited. The advantages of com-
puters w-ith graphical display equipment and on line operating systems

are obvious.

4. 2. 3 Extension Of the Algorithm To Include The ldentification Of

Time Delay

In the previous discussion it was assumed the input vector x(t)
was sampled at the same time the output appeared in the original
system, i.e. at ti. This is not always the case and this restriction
must be removed. In some situations it is possible to determine
when the sampling occurred in the original system. [f this is the
case, then two times tsi and t,l may be determined for each of the N
output events. The times tsi are the times at w-hich the sampling

occurred and equation 4. 1 may be redefined as

Kot ) i=1,2 ...N (4.20)
S1
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The identification is carried out by the procedure described above.
The output of the function generator portion of the PDE does not
appear at the output of the PDE until time ti. If there is a constant,
or almost constant delay between tsi and ti’ then a second control
signal is unnecessary, and a time delay of magniture T may be used

where

N

1
T: — - .
N f=1(t - ) (4.21)

The availability of the sample time, tsi’ makes this case very

similar to that already considered.

A more common situation is one in which the time, ti, is
available and tSi is not. The time at w-hich the input vector w-as
sampled must be inferred indirectly from the data available: x(t),
Z(t‘l) and the t’1' If the input vector is at all representative of the
decision process utilized by the operator, then the model will yield

optimum results when the input vector at time t.1 - 7 is used. Thus if
¢
X = x(ti -7) (4.22)

and 1 is studied systematically, the value which produces the mini-
mum value of the criterion function is the optimal 7. The resultant
value of T will depend on the particular components of the input

vector.
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The PDE has been identified by assuming that the time ti or,
in the last case, t, - T is available in the form of a binary control
signal C (t)which goes from false to true at the time ti or t,1 -T.

If this signal is not available inthe model, then it must be generated
by a binary MSDE. The inputs to the MSDE may be the same as those
used in the PDE, or may include other signals relevant to the deci-
sion, w-hich were not relevant to the magnitude of the PDE event.

The desired output of the MSDE is the binary signal C (t) of the form

just described.

This procedure uncouples the identification, in that the magni-
tude model and the time delay are determined first and the control
element last. Procedures to identify both simultaneously would be

excessively complex.

4.2.4 Stochastic Properties Of The PDE

Once the identification procedure has been completed, a

model remnant vector can be defined

(a ., 7 ) (4.23)

A non-zero remnant results from short term time variations
in the process being modeled, random perturbations of the process,

noise corruption of the measured signals, and finally model
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inadequacies. If it is felt that the model is adequate, then the rem-
nant is a measure of the stochastic processes in the original system.
The distribution function of the N components of the remnant vector
is easily computed, as are its mean and higher moments. The
identification procedure above, is such that the mean is zero. The
moments may be useful as measures of performance, state of opera-
tor training, etc. Alternatively, noise with the same characteristics
could be added to the model output to produce a stochastic human

operator model.

It is not feasible here to determine whether the remnant is
functionally dependent on the observable signals in the process being

modeled or stochastic in origin.

4. 2. 5 Partitioning Of The Input Space

Another aspect of the identification procedure is that it is
possible to perform the identification separately in various regions

of the space formed by the input vector and the output y.

If the output of the PDE represents arm motion of a human
operator, the modeling may be performed for positive arm motions
and negative arm motions separately. It is then possible to investi-

gate : asymmetric control actions by comparing the two models.
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As another example, assume that the input vector to a PDE is
formed from error signals presented to a human operator. By model-
ing the control action resulting from event points inside a hypersphere
of radius R separately from those outside, it is possible to study the

effects of error amplitude on the operator's response.

4_3 ldentification Of The MSDE

The MSDE was designed to mechanize a concept that is easily
interpreted geometrically. A priori know-ledge is used to hypothesize
a trial structure of decision surfaces, constructed from hyperplanes.
Working backward from the hypothesized decision surfaces, the
components of the input vector are selected. The space formed by
linear combinations of the components of the input vector x(t) is
called the input space. The input vector, x(t),is composed of time
varying signals. The path traced out by the input vector in the input
space is called the event trajectory. When the event trajectory

crosses a decision surface the output vector of the MSDE is changed.

The output of the MSDE w-as given in equation 3. 1 and shown

schematically in Figure 3. 1, as

h(t) = B(TIA x (t)]) (4.24)

where x(t) is an n vector of input signals, A is an m x n matrix of
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arbitrary real coefficients, T is a vector threshold operator action
on the m vector Ax such that the components of T(Ax) say Ti are
defined by
1 if(a, x +a,,x,+...+a, x)>0

i=1,2,...m
i (4. 25)

i + ... 4 <0
0 i (aioxo %1171 ainxn) -

B (T)is a p vector of boolean functions of the vector T.

h is a p vector of binary outputs.
It is assumed that the state of the process being modeled is known,
and is denoted by

k (t)

where k (t) is a p vector of binary states. The identification of the
model is carried out by adjusting the parameter matrix, A, until
h (t)and k (t)are identical. The model achieves this by producing
outputs w-hich are of the proper state and which appear at the correct

times. The concept of matching h (t)and k (t) must be formalized by

defining a suitable criterion function.

4_.3. 1 Selection Of A Criterion Function For The Identification Of

The MSDE

An error function is defined which assigns numerical values

to the various ways in which h and k can occur:
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E (h(t), k(t))

If the two states are identical, then E is zero. Various magnitudes
are assigned to the possible errors depending on their physical

significance.

From the error function, a criterion function can be defined,

as

t
m

p (A) = [ E(h(t), k(t) dt (4.26)
(6]

where tm is the length of the record k (t). # (A) measured the
difference between two time varying binary vectors. This alone is
not enough to measure the performance of the model. Consider the

example of Figure 4.2.

1t
Process

k(t)

Figure 4.2 Extraneous Model Outputs
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As seen from Figure 4.2, the criterion function may be
small, without eliminating a large number of extraneous outputs,
which because of their short durations, do not significantly affect the
value of §. To prevent this, the state change occurring nearest the
state change of k is arbitrarily called the ith model response. All
other responses are false responses and are counted. Let M be the
total number of false responses. The augmented criterion function is

t
m

) :Kl{—, E (b,k) dt T K,M (4.27)

where K1 and K2 are weighting factors.

If the model is required to lead the process by a time T, then

the criterion function must be modified:
t
s p—

m
p=x | E(h kdt t KM (4. 28)
(0]

If v is setto zero, this reduces to the previous case.

4,3.2 The Parameter Adjustment Algorithm

If an initial set of coefficients, A'p, is known, then the cri-

terion function may be evaluated:

% % * *
B(A)=0(a s, --ena ) (4.29)

If the parameters are incremented and decremented by a fixed
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amount A, one at a time, then 2 (n m) values of § are computed.
Suppose decrementing one parameter, a,, by A produces the minimum

1

value of §. A new parameter matrix can be defined by

® *

x®
ll,a ’a"A’”"amn) (4'30)

A*
new = (a 12"

The process is repeated until none of the trial parameter matrices
produce a lower value of . The value of A can be doubled or halved
and the search attemped again. If a better value of ¢ is found, A is
returned to its original magnitude and the search resumed. If a
better value is not found A is modified again, until A reaches a pre-

set limit, atwhich time the search algorithm is terminated.

The threshold element selected has a useful property
T(KAx) = T(Ax) (4.31)

if K is a positive non-zero scalar constant. This property makes it
possible to normalize the A matrix a row at a time.

If this is done at each step, or periodically, the range of the
elements of the parameter matrix is restricted to

‘aij‘ <1 (4.32)

The adjustment increment, A, may be selected as 10%or 1%

of full scale, depending on the particular problem.
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4. 3. 3 Selection Of Starting Values

The problem of selecting starting values for the parameter
matrix , A, is not easily solved. A priori knowledge concerning the
most likely positions of decision surface leads to the best estimates.
If a priori knowledge is not available, then random search is used.

A random number generator is used to produce a large number of
parameter matrices. The value of # is computed for each matrix and

the best ones used as starting conditions for the search algorithm.



CHAPTER 5
AN ASYNCHRONOUS PULSE-AMPLITUDE PULSE-WIDTH MODEL

OF THE HUMAN OPERATOR

5.1 A Discrete Control Experiment

When the dynamics of a controlled element contain two or
more integrations, the performance of the human operator approaches
that of a bang-bang system. In particular, a pure inertia (two inte-
grations) usually elicits pulse responses from human operators [141.
A mathematical model to represent this output behavior could contain
sampled inputs w-ith continuous supervisory control of the sampling.
This supervised sampling extends the periodic sampling of previous
models [2, 3 to aperiodic input-dependent sampling. The pulse
nature of the output makes it possible to relate pulse events to deci-

sion surfaces in the error phase space [307.

The object of this chapter is to describe the development of a
human operator model which produces discrete outputs in response to
continuously presented gaussian random inputs. Computer proce-
dures for the complete identification of all model parameters are

described.

75
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5.2 Statement Of The Problem

A block diagrarn of the compensatory tracking situation used
in this study is shown in Figure 5. 1 and a portion of a typical track-
ing record is found in Figure 5.2. An examination of the human
operator output (stick position) reveals a sequence of pulses w-hich
are roughly triangular in shape. For the purposes of this study the
actual human operator output was converted to the idealized human
operator output, as seen in Figure 5.2. The selection of symmetric
triangular pulses as ideal human operator pulses is arbitrary, and
other pulse shapes can be used. Further it was decided to treat each
pulse as a separate event, uncorrelated with previous pulses, in
order to keep the structure of the pulse model as simple as nossible,
The use of ore-programmed pulse sequences [2,1] oresents an

opportunity for future extensions of the work.

The idealized human operator output can be represented by a
sequence of three-tuples: time of the pulse initiation, pulse ampli-
tude, and nulse width. If a causal relationship exists between the
transient human operator inputs and the pulse outputs, then the input
record can be reduced to samples of the input in the vicinity of the
pulse initiation. The objective of the present study is the determina-
tion of the relationships between these input samples and the pulse

output.
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Since each event is treated independently, short term human
operator variations aye easily computed. These variations are the
difference between the model outputs and the actual human operator
outputs. The distribution functions of these variations can be
obtained and, if desired, can be reinserted as model perturbations.
The distribution functions and their associated parameters (mean
and moments) can be used asmeasures of performance and state of

training. e

5.3 The Experiment

The compensatory tracking task shown in Figure 5. 1 w-as
mechanized using an analog computer, an X-Y oscilloscope and side
arm control stick. Operator distraction w-as minimized by placing
the manual control station inside a sound proof enclosure with
approximately 40 db of audio attenuation. The operator wore an
aircraft type headset with lip microphone for communication pur-
poses. The operator sat in achairwithout armrests facing the dis-
play oscilloscope. The control stick was adjustable in position and
contained an integral arm rest. The operator adjusted the control
stick and arm rest into a comfortable position. The oscilloscope
was placed at eye level.

The double integrator plant closely resembles an aircraft

pitch axis. The input is elevator position and the output is altitude.
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In order to preserve this resemblance, the error display was a
rotating needle corresponding to a glide path indicator in an aircraft
navigational /ILS display. Horizontal needle position represented
zero error. The frequency response problems associated with actual
instruments were avoided by simulating the glide slope needle with

an oscilloscope containing a specially prepared edge lighted reticle.

The control stick and oscilloscope were connected to the ana-
log computer which converted the stick output to a voltage, computed
the plant response, and generated the necessary X and Y axis signals
for the error display. By solving some of the equations explicitly
it was possible to obtain the error and its exact derivative. The
inputs to the system were obtained by filtering the output of a low-

frequency gaussian noise source. The filter transfer function was:

K
F(s) = (5.1)

(10st 1) (st 1)3

An FM magnetic tape recorder was used to record tracking
data, which was later digitized and stored on a disk file for digital

processing.

A single subject received approximately 20 hours training
over a period of one month. The training sessions consisted of

10 minutes of tracking with 10 minute rest periods. One of the last
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sessions was recorded on magnetic tape, From the 10 minute ses-
sion approximately 3 minutes of data was subsequently digitized.

The sampling interval utilized was 25 milliseconds or 40 samples

per second.

The digitized data stored on the disk file was printed out and
punched on IBM cards for permanent storage. The following data
was punched on IBM cards:

1. The time of the pulse initiation.

2. The time of the pulse termination.

w

The peak amplitude of the pulse.

4. The values of e and & at the following times:

a. One sample after the initiation of the pulse
b. At the start of the pulse

c. The 5 samples prior to the start of the pulse

5.4 Hypothesized Human Operator Model

The input to the human operator is the error, e(t). If itis
assumed that the operator is capable of differentiating this display
variable then e(t) is also an input to the operator. The operator's
output Is a pulsatile control action characterized by a time of pulse

initiation, pulse amplitude and pulse width.
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It is hypothesized that the pulse amplitude and pulse width
were computed from samples of the error and error rate, and the
decision to initiate a pulse is based on decision surfaces in the error

phase space.

The resultant model structure is shown in Figure 5.3.

PDE pulse amplitude 3|

PULSE
GENERATOR

PDE pulse width

e(t

2o

Ol

MSDE -T8

Figure 5.3 Hypothesized Human Operator Model

5.4.1Pulse Amplitude Model

The amount of pulse amplitude modulation utilized by the

human operator is evidenced in the distribution function of the pulse
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amplitude, seenin Figure 5.4. Further work is needed to evaluate

the significance of the.asymmetry in the distribution function.

The time of the pulse initiation is easily measured. This is
an overt operator decision. Some time before this, the operator
samples the error and error rate and computes the amplitude of the
pulse. The process is easily modeled by a PDE, as shown in

Figure 5. 3.

The PDE's input vector was

x (t) =1

(o]
xl(t) = e(t) (5.2)
xz(t) = e(t)

The input vector is formed from the digitized signals avail -
able on punched cards. These cards contain samples of the error
and error rate ranging from0.125 before to 0. 025 seconds after
the actual pulse initiation. These samples may be viewed as leading
the pulse initiation by T seconds where T varies between 0. 125 and

-0.025 seconds in steps of 0.025 seconds.

The resultant form of the PDE takes the form show-n in

Figure 5.5 where
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Figure 5.5 Pulse Amplitude PDE

There were a total of 142 pulse events in the digitized record. Of
these 75 were positive control pulses and 67 were negative control
pulses. The space formed by e(t), €(t) and P, the pulse amplitudes,
was partitioned about the p = 0 plane and the identification procedure
performed separately on positive and negative operator control
actions. With this partition, it is possible to investigate possible

asymmetry in operator control actions.

A digital computer program w-as w-ritten to carry out the
identification procedure for PDE's derived in section 4.2. 1 and

extended to include time delay in section 4. 2. 3.,
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The inputs to the program were the values of the input vector
T seconds before pulse initiation, where the range of v was from
125 milliseconds before the pulse to 25 milliseconds after the pulse,
in steps of 25 milliseconds. Also supplied were the actual pulse
amplitudes, pi, i=1, 2, ...N. The computational results are

tabulated in Table 5. 1.

TABLE 5.1

Polarity
-0.065]-0.139|-0. 145
0.100 -0.061(-0.066{-0,134}-0.143}2.16}-1.99 0.496
0.075 -0.062(-0.065|-0.130{-0.137}2.16{-2.00 |] 0.495]0.222
0. 050 -0,062|-0,064]-0.125}-0.131}2.16]-2.04 0.4924 0.228
0. 025 -0.059|-0.061}-0.118}-0.1232.19|-2.10 0.498 | 0.242
0 -0.057}-0.060{-0.112]-0.1162.22 {-2.14 || 0.504 | 0.253
-0. 025 -0.057 |-0..060(-0.106]-0.108 {2.25]-2.20 0.509 {0.263

As can be seen from Table 5. 1, there is a well defined mini-
mum value of the criterion function @ as T is varied. A plot of the
criterion function, 6 versus T is found in Figure 5.6. A plot of the
pulse amplitudes generated by the optimal models versus the actual
pulse amplitudes is found in Figure 5. 7. The points are quite close

to the ideal unity slope line. The optimum values for positive and
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negative pulses, respectively are ao =2.16, -1.99 volts; a1 = -0. 062,
-0.066; a2 = -0.125, 0. 143; and 7= 0.050, 0. 100 seconds. The
symmetry observed in these values contrasts with the large differ-
ences in the values of the optimum criterion function ﬂt = 0.492 and
¢_ = 0.217. In other words, the positive pulses produced poorer
correlation with the actual pulse amplitudes than did the negative
pulses. This is also seen in the scatter plot, Figure 5.7, where the
negative pulse events are closer to the ideal line than the positive
pulse events. This may be a result of one or more of the following
factors: arm motion asymmetry associated with the side armcontrol

stick, incomplete training, or the tendency of the operator to prefer

certain portions of the error phase plane.

In a recent experiment by Agarwal, [ 1]the effective inertia,
spring constant, and damping coefficient of the human operator per-
forming forearm control were measured. The results of their

experiment are tabulated in Table 5.2.

TABLE 5.2
Direction of Arm Rotation
Parameter Supination Pronation
- -3
J 1.05x103 .4 x 10
-2 -2
B 1.3 x10 .5 x 10

| K I 25 | 2.3 |
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The asymmetry in these results tends to support the assumption that
the large differences in the criterion functions are a property of side
arm controllers resulting from the structure of the operator’s

neuromuscular system.

An analysis of the differences betw-een the human operator
pulse amplitudes and the corresponding model pulse amplitudes
serves two purposes. The fidelity of the model is tested and the
distribution functions of the human operator variations may be
determined. These distribution functions are found in Figure 5. 8

and their mean and standard deviation are found in Table 5.3.

TABLE 5.3
H Pulse Polarity
+ -
Mean (volts) 0 0
Standard Deviation (volts) “ .80 .58

The sample signal ¢ must be generated by an MSDE. The

times at which the MSDE must change state may be computed from

_ s (5. 4)
tiM_ti TI

where t.l iIs the actual time of the pulse initiation, T IS the time

delay appropriate to the ith pulse event and tiM is the time at which

the MSDE muet change state.
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5.4.2 Pulse Width Model

The pulse w-idth of a pulsatile event is easily generated by a
PDE. It is assumed that the pulse width PDE is controlled by the
same control signal as the pulse amplitude PDE. Preliminary
analysis of the tracking records led to the hypothesis that the pulse
width w-as proportional to pulse amplitude. This hypothesis leads to

a particularly simple input vector

X =1
0 (5. 5)
Xlszi i =1, 2, N
The resultant PDE is
| D

| A\

~ Pulse

Width

Figure 5.9 Pulse Width PDE

The pulse w-idth model falls into the category of modeling
situations discussed in section 4.2.2. The input vector is of suffi-
ciently low dimensionality, that the input-output relationship can be

plotted. Such a plot is found in Figure 5. 10where the pulse width is
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plotted against the pulse amplitude. The PDE fits the event points
shown with a straight line. The best fit straight line appsars to a
horizontal line at the mean pulse width. The computational results

are: a. =0.711, 0. 316, a

0 17 -0. 021, -0. 049 for positive and nega-

tive pulses respectively. The coefficient associated with the pulse
amplitude is small, indicating that the pulse w-idth is almost inde-
pendent of pulse amplitude. A plot of the model pulse w-idth versus
the actual pulse w-idth is found in Figure 5.11. These plots are
further evidence that the pulse width is not strongly dependent on
pulse amplitude. The distribution functions of the difference between
the actual pulse width and the model pulse w-idth is found in Figure

5. 12. The mean and standard deviation of these distribution functions

are found in Table 5.4.

TABLE 5.4

Standard Deviation (sec.)

Polafity
, A _
Mean (sec.) 0 0
u 0. 05 0. 04
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5.4.3 The Complete Pulse Amplitude - Pulse Width Model

If a binary control signal, ¢, is assumed, then the complete

pulse amplitude - pulse width model can be constructed as shown in

Figure 5. 13.

Width

e(t) Sample
and Hold

é(t)

3 Sample
and Hold

Pulse Amplitude

GENERATOR —>

(a2
Y g PULSE
.

Ql
=
1]

> e > Start

Figure 5. 13 Pulse Amplitude - Pulse Width Model

The coefficients, a, and the time delay, T, depend on the

polarity of the pulse. Two arrangements are possible: determine
average coefficients and an average time delay, or construct two

separate models.
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In the next section, the binary control signal, E, will be
generated by an MSDE. The components of the MSDE's input vector
will be e(t) and e(t). Thus the pulse amplitude - pulse width model

shown in Figure 5. 13 contains an input dependent sampler.

5. 4. 4 Pulse Initiation Model

The overt act of generating an output is a measurable event.
The time at which the output event is initiated is easily obtained from
the tracking record, show-nin Figure 5.2. The pulse initiation
process is easily modeled by a binary MSDE, i.e., an MSDE with an
output w-hich is either on or off. If this signal is used as the binary
control signal, c, which operates the pulse amplitude and pulse
width sample and hold devices, then the desired on times for the N
events may be computed from:

tiM=t,1—Ti i=1,2, ...N (5. 6)

where the ti are the time at which the desired output of the MSDE,

M

Kt), becomes true, t:L are the actual times of initiation and Ty is the
time delay obtained in section 5. 4. 1where T, = .050 milliseconds
for positive pulse events and Ti = .100 milliseconds for negative

pulse events.

Although the above yields a decision element which generates

the desired control signal, it does not necessarily reflect the human
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operator's behavior. The decision to initiate the pulse might w-ell be
made prior to the decision to sample and hold the input vector. This
possibility may be investigated by selecting a criterion function for
the MSDE adjustment algorithm that allows the time delay to be com-
puted. This may be achieved by assuming that the operator ignores
the input vector during a pulsatile event, and does not resume
monitoring the input vector until the pulse output event is complete.
This results in the following procedure for evaluating the MSDE
criterion function: apply the time varying input vector until one of
tw-0 possibilities occurs--the MSDE generates an output, or the actual
time of a pulse initiation is exceeded. If the MSDE produces an
output, compute the time by w-hich the signal leads the next actual
pulse initiation. Resume applying the input vector starting at the

end of the pulse event. If the MSDE produces no output prior to the
actual time of initiation, the event has been missed. A tally is kept
of the total number of misses. Ideally, an MSDE will be found such
that an output is produced exactly T seconds prior to the actual time
of initiation for every pulse event. If the MSDE is representative of
the operator's behavior then this time delay will be larger than or

equal to the time delay associated with the sampling process.
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This may be formulated by defining a criterion function as

follows:
Kl N-M )
il v T Uy =y )0+ KM
i=1
1 N-M
and T NoL Z (t, = t) (5.7)
i =1

where t_l is the actual time of pulse initiation, tim is the time at
which the MSDE output became true, and M is the number of missed

events.

The time delay, T, is the mean lead time of the MSDE. The
first term of the criterion function is just the standard deviation of

the lead times (t_lm - ti)"

The results of the pulse amplitude model clearly demonstrate
the ability of the human operator to estimate the derivative of a
displayed signal. The MSDE input vector was selected with the
assumption that the decision to initiate a pulse is based on a relative-
ly simple decision surface in the error, error rate phase plane, A
number of error phase plane trajectories w-ere sketched, Figure 5. 14,
The trajectories start (circles) at the termination of a pulse event and

end (crosses) at the initiation of the next pulse. An inspection of
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these trajectories led to the observation that the human operator
utilizes the favorable error rate in the second and fourth quadrants
and allows the system to coast until the magnitude of the error is
sufficiently small. If, at the time the error rate is still large, a
new pulse event is initiated. A further observation is that an error,
error rate dead zone exists inside of which no pulse events are
generated. This is consistent with other human operator tracking

experiments 234G .

Based on the above analysis, decision surfaces in the error

phase space were selected. These surfaces are shown in Figure 5.15.

An MSDE is easily constructed to realize these decisions

surfaces. There are two surfaces described by

(5. 8)

®.
4
3
[¢]
it
o

and

e =0 (5.9)

where R is the radius of a circular dead zone and m is the slope of a

line through the origin, as shown in Figure 5. €5.
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e
+ Pulse
Region
Figure 5. 15 Decision Surfaces For Pulse Initiation MSDE
The input vector 1Is
=1
"0
xl = e(t)
Xy = é(t) (5.10)
2
x3 =e (1)
X, = é 2(t)

The resultant MSDE is shown in Figure 5. 16.



103

' | A\ _pulse
3 N 1 Initiate
3 ( ) N F
%
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1
——_‘@'—J +Pulse
Initiate
- Z

Figure 5. 16 The Pulse Initiation MSDEZ

The MSDE contains only two arbitrary constants which must
be identified. Rather than utilize the adjustment algorithm developed
in section 4.3, itwas decided to perform a systematic study of the
admissible values of R and m. This is feasible when the number of

parameters is sufficiently small, and their ranges well defined.
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The computational results are seen in Figure 5, 17. The
optimum parameter values are R = 4.0 volts and m = -1.43. The
value of Twhich results from these parameter values is ¢+ = 0.200
milliseconds. The pulse initiation model may be studied by plotting
the distribution function of the times the model produced an output
relative to the actual time of initiation. Such a plot is found in
Figure 5. 18. A peak is observed at 100 milliseconds before actual
pulse initiation. These MSDE outputs do not lead the actual event by
the required 200 milliseconds. This is consistent with the experi-
mental data, as there are a number of Dulse events which are
separated by less than 200 milliseconds. A plot of the distribution
function of the times between pulse events is found in Figure 5. 19.
Again, a peak is observed at 100 milliseconds. Thus, if the model
makes a decision to initiate a pulse at the first available instant,
i.e. exactly at the completion of the pulse event in progress, the
decision will still be less than 200 milliseconds prior to the actual
initiation of the next pulse. Two mechanisms may account for this
result. The first is that the operator resumes monitoring of the input
vector some time before the completion of the pulse. The second,
and most likely is that the operator had decided to generate two or

possibly more pulses before he initiated the first one.
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The operator generates single pulses to achieve rate correc-
tions and pulse sequences to achieve position corrections. Human
operator models to represent preprogrammed pulse sequences have
been proposed by Bekey and Angel [ 4] and Tomovic and McGhee [42].
The inclusion of a Dreprogrammed pulse sequence generator repre-

sents a logical and necessary continuation of this study.

The use of more complex decision surfaces is clearly indi-
cated. These results do, however, demonstrate the applicability of
the MSDE and the PDE to the modeling of discrete behavior in

human operators.

Since the decision to initiate the pulse event leads the decision
to sample the inputs, it may be hypothesized that the initiation of an
output pulse by the human operator is a complex process which con-
sists of several phases as follow-s:

(a) Somew-here near the completion of an output pulse,
monitoring of e and é by a decision element is
resumed.

(b) When the error trajectory enters pre-selected
regions of the phase plane, a decision to produce a
pulse is made

(c) Some time later the input vector is sampled and the

amplitude and width computed.
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(d) Some time after (c)the pulse is initiated.

5.5 The Complete Human Operator Model

The complete human operator model is shown in Figure 5.20.
An interesting feature of the model is the input dependent sampling

which takes place in the pulse amplitude PDE.

5.6 Surmmmary of Results and Conclusions

The PDE and MSDE may be used to contruct identifiable
human operator models for discrete control behavior. The resultant
model contains a completelyidentified input dependent sampling

element.

The parameters of the human operator model shown in
Figure 5.20 were obtained from experimental data taken from one
subject in an advanced state of training. No records were made of
the error or measures of the error as a function of training, The
computational results brought to light a number of interesting
results:
(1) The delay time T between the model's decision to
pulse and the actual event was 200 milliseconds.
The value ig within the range of reaction times

reported in the literature
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(2) The numerical values for the time delays in Figure

(3)

(4)

5. 20 lead to the following sequence: (1) A decision is
made to generate a pulse, followed by (2) a pause of
100 - 150 milliseconds, (3) e(t) and € (t) are sampled,
(4) during the next 50-100 milliseconds the amplitude
and width of the pulse are computed'and (5) the pulse
IS generated.

The pulse amplitude and pulse w-idth models for nega-
tive pulses produce better correlations with the
experimental data than the models for positive pulses.
This is clearly apparent in the scatter plot, Figure
5.7 and in the values of the criterion function,

Figure 5.6. This may be the result of incomplete
training, the design of the side arm controller used,
the position of the subject's arm relative to the
controller or a characteristic of the particular human
operator in this experiment. The results of

Agarwal [ 1] are cited in support of the hypothesis
that this is a characteristic of side arm controllers.
The pulse amplitude models for positive and negative
pulses are gquite similar, despite considerable asym-

metry in pulse amplitude distributions, Figure 5. 4.
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(5) The results presented in Figure 5. 19 strongly
indicate that human operators utilize some pre-
programmed pulse sequences.

(6) If the differences between model results and experi-
mental tracking data are viewed as the result of
short term human operator variations, then the
statistics of the human operator variations are

easily determined, tables 5.3 and 5.4.

From the present study it is not feasible to determine
w-hether the model errors observed are random or functionally
depending on the human operator inputs and input-output history.
Further studies should include preprogrammed pulse elements,
more complex error phase plane decision surfaces, and the effects
of training on the model parameters and their associated distribution

functions.



CHAPTER 6
A MODEL FOR THE TRACKING BEHAVIOR OF HUMAN OPERATORS

USING MULTIPLE COORDINATED DISPLAYS

6.1 Scanning Behavior Of Human Operators

There are many physical systems in w-hich the operator's
control actions are based on information obtained from tw-0 or more
sources. The aircraft instrument panel show-n in Figure 1.3 is an
excellent example of such a system. The information presented by
the instruments is deterministic and coordinated in that the state of
the aircraft can only be determined by reading a number of instru-

ments.

Models which describe the scanning behavior of human opera-
tors have been described in the literature. These studies may be
divided into three groups. Group | contains situations in w-hich the
display devices presented uncorrelated signals. The operator's
control action consisted of monitoring the displays for limit condi-
tions and actuating a button or sw-itch. Group I also contains multi-
axis control tasks in w-hich the displays are uncorrelated w-ith each
other. Group II contains situations in w-hich the displays presented

113
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deterministic, coordinated signals, but the signal time histories
were not utilized. Group III contains situations in w-hich the displays
presented deterministic, coordinated signals whose time histories

were recorded simultaneously with the operator's eye position.

Models for the scanning behavior of operators in Group | and
II situations have been presented [535 . In all of the investigations
described in the literature, the behavior modeled is the distribution
function of the fixation times for each instrument, and the distribution
function of the various inter-instrument transitions. The resultant
scanning model depends on the long term properties of the displayed
signals; signal mean and higher moments, or bandw-idth. The

instantaneous signals viewed by the operator are not utilized.

Models for Group III situations have not been published to the
present time; the purpose of this chapter is to synthesize a deter-
ministic model for an operator's scanning behavior in a Group III
experiment. The control task described in the preceding chapter
was the pitch axis of an aircraft. The operator viewed a single
display w-hich presented altitude error and operated a control stick
which positioned the aircraft's elevator. The altitude error display
may be viewed as an ILS/Glide Slope Needle or simply a high-low

indicator in a terrain avoidance system. If a second display is added,
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w-hich presents the aircraft's pitch attitude, the control system
becomes a Group III task if both displayed signals and the operator's

eye position are recorded.

This chapter presents the results of such an experiment. A
complete human operator model is synthesized and identified. Dis-
crete decision elements, operating on the displayed signals, are

utilized to model the scanning behavior of the operator.

6.2 The Tracking Task

The tracking task consists of maintaining an aircraft at a
constant altitude while flying over rather bumpy terrain. The inputs
to the operator are aircraft attitude (pitch angle) and altitude error.
The operator's output is elevator position. A block diagram of the

control system is found in Figure 6. 1

The operator must scan or commutate between the two dis-
plays in order to operate the system. The two displays w-ill be
referred to as the LEFT display (attitude) and the RIGHT display

(altitude error).

Terrain avoidance and ILS/NAYV systems utilized similar
pitch axis displays. A terrain avoidance task may be performed at
constant throttle, while ILS climbs and descents depend heavily on

throttle control. Thus, a terrain avoidance task w-as utilized.
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R(t)+ : Altitude -
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Operator Vehicle of
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LEFT
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Angle
Display

Figure 6. 1 The Tracking Task

The operator w-as instructed to keep the instantaneous error
as small as possible w-ithout allowing the pitch angle to exceed

140 degrees.

6. 3 The Experiment

The transfer functions for the pitch axis and the vehicle
altitude w-ere selected so that the operator produced pulsatile control

actions. The transfer functions we-ere:

Pitch angle (degrees) _ 2 (6. 1)
Stick Otuput (volts) s(s t 2) :

Al le (feet) ? 50 2

Pitch angle (degrees) S(SZ t 10s t 100) (6.2)
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The display gains were:
Pitch attitude: 10 degree/cm of vertical displacement
Altitude error: 100 feet/cm of vertical displacement
The stick gain was:
3 volts/ degree of rotation

The tracking station is shown in Figure 6. 2

The operator sat in a long range transport pilot's chair,
which could be adjusted vertically to suit the operator. The sidearm
controller was also adjustable and contained an integral arm rest,
Frequency response problems associated with actual aircraft instru-
ments w-ere avoided by utilizing oscilloscopes with specially prepared
edge lighted reticles. The oscilloscope displays are seen in

Figure 6. 3.

The transfer functions w-ere mechanized on an analog compu-
ter, Seven signals available at the analog computer were recorded
on FM magnetic tape:

1. the operator's eye position
. - \

2. stick position

3. pitch angle, 6(t)
. o

4. pitch rate, 8 (t)

5. altitude error, e(t)

. o
6. altitude error rate, e (t)



a. Display Configuration

‘b. Pilot's Seat and Sideéfm C
FIGURE 6. 2 = Tracking Station

ontroller
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a. RIGHT Display Reticle

b. LEFT Display Reticle

FIGURE 6. 3 - Illuminated Displays
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The input to the system w-as obtained by filtering low frequency

gaussain noise. The filter transfer function w-as:

F(s) = 100,3]:( (6. 3)

(s tl) (sta)

The nominal values of K and a were 30 and 10 respectively.
The values of K and a w-ere adjusted to control the difficulty of the

task.

A single subject received approximately 30 hours of training
over a period of three weeks. The training sessions consisted of
six minutes of tracking and five minutes of rest. One of the last
sessions w-as recorded on magnetic tape and subsequently digitized.

The sampling interval was 25 milliseconds or 40 samples per second.

6.4 Measurement of Eye Position From Electro-ocular Potentials

According to Young T 52} , Schott {55} demonstrated a rela-
tionship betw-een eye motion and periorbital potential variations as
early as 1922. Mowrer, Ruch, and Miller [ 56] found that by
placing electrodes on the skin around the eye, potential differences
could be measured between electrodes w-hich resulted from eye
motions in the plane formed by the two electrodes and the eye's
center of rotation. These potentials are often referred to as electro-

ocular potentials,
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The potential changes due to eye motion are approximately
20 microvolts per degree of rotation. The gain and stability of D. C.
amplifiers have only recentlyreached the point w-here these poten-
tials are easily measured. Ifapair.oefelectrodes are placed laterally
on either side of the eye, then the potential difference between them
may be used to determine lateral eye position. This potential may
be increased by placing lateral electrodes near both eyes and connect-
ing them in series. A reduction in the number of electrodes required
may be obtained by eliminating the two middle electrodes. The

resultant electrode placement may be seen in Figure 6. 4

The left and right electrodes were connected to the differen-
tial inputs of a high gain, high common mode rejection amplifier,
The center electrode w-as connected to the guard or common input.
The amplifier contained a variable bandwidth low pass filter. The

filter cutoff was set to 10 cps to eliminate 60 cps noise pickup.

The system w-as calibrated by asking the subject to look at a
spot midw-ay between the two displays. The amplifier offset was
used to zero the amplifier output. With an amplifier gain of 2500,

30 degrees of eye motion produced an output of approximatley 2 volts.
Some subjects electro-ocular potentials contained a small D. C.

level in addition to the eye motion potentials. If the amplifier is to
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be kept out of overload, the gain must be reduced, This reduces the

signal to noise ratio and makes it difficult to detect the eye motions.

When this becomes troublesome the circuit shown in Figure

6.5 w-as used in series with one of the electrodes.

1.4 V. Mercury Battery
] — ’
fife

2KQ 2000

v

N,
el

Figure 6. 5 D. C. Potential Correction Circuit

The polarity of the correction is reversed by reversing the
battery in its holder, The potentiometer is adjusted periodically to

insure that the amplifier output is within its specified voltage range.

The electro-ocular potential was used to determine which of
the two displays the subject was viewing. A portion of a typical eye
motion record is shown in Figure 6.6. As can be seen from this
figure, no difficultyiis encountered in’determiningwhich display is
being viewed. For this reason, no attempts were made to accurately

calibrate the system or to eliminate slow- D. C. drifts.
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RELEN
I

_—ﬂ 1 Second

Figure 6.6 Typical Eye Motion Record

6. 5 The Experimental Data

As described previously, a single subject received approxi-
mately 30 hours of training. One of the last six minute tracking
sessions w-as selected for detailed study. The FM tape recording
was digitized by sampling all seven recorded channels every 25

milliseconds.

Digital computer programs were written to correct for zero
offset and gain errors introduced by the FM recording process.
These corrections were computed from the zero and £ 100 volt

calibration signals recorded at the end of the run.
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The digitized record contained the time histories of the

follow-ing signals:

1. eye motion

2. stick motion

3. pitch angle 8(t)

4. pitch rate 6(t)

5. altitude error e(t)

6. altitude error rate e(t)

7. altitude command input
A typical portion of the tracking record is seenin Figure 6. 7. The
start of the run w-as located on both the digitized record and strip
chart recording. AIll time measurements were made relative to

the start of the session.

The transient eye motion data was converted to integer digits

as shown in Figure 6.8.

The operator is assumed to be view-ing the LEFT display when
the code digit is 6, 1 or 2, and the RIGHT display when the code
digitis 3, 4 0or 5. A total of 216 eye motion cycles left to right and

back again were located in the digitized record.

The time history of the stick motion w-as examined. As can

be seen from Figure 6. 7, it is strongly pulsatile. The stick
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CODE 4 5 6 1 2 3 4 56 1

Figure 6. 8 Discretization of Eye Motion Data

motions were idealized as triangular shaped pulses, as shown in
Figure 5.2 of the nreceding chapter. The time of the pulse initiation,
time of nulse termination, and the amplitude of the pulse were
recorded. If a pulse w-as Dart of a sequence of pulses, the zero

crossing noint w-as used to estimate the initiation and termination

times.
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6.6 The Proposed Model

The only difference between the experiment described above
and the experiment of the previous chapter is the scanning behavior
of the operator. Since the operator's outputs are oulsatile, much of
the model will be identical to that of the previous chapter. There
are, however, tw-ice as many signals available to the operator. The
task of modeling the resultant behavior is considerable as the
dimensionality of the signal space renders intuitive and graphical
aids useless. Instead systematic modeling procedures must be

relied upon.

The ability of operators to estimate rates of change of dis-
played variables is well established. Thus, w-hen the operator looks
directly at a display, the signal and signal rate are assumed to be
available continuously. |If direct or foveal vision is assumed to be
the only source of input to the operator, then signals in the periphery
are not available. When the operator moves his eyes from one dis-
play to the other, it may be assumed that the last observed values of
the signal and signal rate are stored. A scanning model w-hich re-

flects this description is found in Figure 6. 9.

The element w-hich models the operator's decision to switch

displays is hypothesized to be an MSDE.
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Figure 6.9 Scanning And Signal Processing System

The remaining portion of the operator model shown in

Figure 6. 10, follow-s from the results of the previous chapter.

v/
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Figure 6. 10 Proposed Human Operator Model

6. 6. 1 Comments On The "Operator Input™

The "operator input' as defined above consists of tw-0 con-
tinuous signals and tw-o discrete, sampled and held signals. There
are, consequently, at least four inputs to the decision elements used
to synthesize the model. The input vectors to each element will

contain at least 5 components. The decision space will be at least
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six dimensional. This makes it almost impossible to select reason-
able decision surfaces from a priori knowledge of the system. The
possibility that the operator utilizes three dimensional decision
surfaces and forms more complex surfaces by combining them 1is

investigated below.

6. 7 ldentification Of The Pulse Modulation Model

The control actions of the operator were idealized above as
triangular pulse events. Each event consisted of a time of initiation,
a pulse amplitude and a pulse width. The validity of this idealization
will be investigated below. The results of the previous chapter
clearly demonstrate the applicability of PDE's to the modeling of the
operator's decision as to the amplitude and width of the pulse to be
generated. The physical separation of the display devices prevents
the operator from utilizing both displayed signals continuously. The
output of the operator's scanning and signal processing system,
shown above in Figure 6.9, can be computed from the eye position
record. The resultant signals are called the Operator Input. The

PDE input vectors will be derived from these signals.

The PDE produces a scalar voltage, the magnitude of which
determines the pulse amplitude or width. A binary signal controls

the sampling and computation process. The identification procedure
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determines this timing signal relative to actual time of initiation of
the pulse. Another decision element, described below-, models the
operator's decision to initiate a pulse event. The output of this
element aiways leads the actual time of initiation by a known time.
The timing of both decision elements is identified relative to the

actual pulse initiation.

By algebraic manipulations, all of the control signals can be

defined relative to the output of the pulse initiation decision element.

The input vector utilized for both the pulse amplitude and the

pulse width PDE's was:

XO = 1.0 x8 = éz(tl- T)

X, = G(ti- T) xY = G(ti - T)b (tl-'r)/ 100
x2 = e(t_l— T) x10 = e(tl— T)e(tl— 7}/100
x3:e(ti - 1) xllze(tl—’r)'e(tl-'r)/loo
X, =&t = 7) x12 = B(t, - T)e(ta - 7)/100
Xg = ez(tl -7) X = o(t, - T)e{t1 -7)/100
x6:'ez(t1- 7 X, = el - Tt - 7)/100
x,=e (t - T)

(6. 4)
where T is a lead time relative to the time of actual pulse initiation,

tl. Further, the signals shown are not the actual displayed
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variables, but the Operator Inputs produced by the scanning and

signal processing system shown in Figure 6.9.

The components of the input vector form a four dimensional
quadratic surface in the space tormed by 8, 8, e, é and the pulse

amplitude or width.

6. 7. 1 Computational Results

The identification procedure of chapter 4 w-as used to identify
the coefficients of the PDE's and the associated time delay. As in
the previous chapter, the event space was partitioned by modeling
the positive pulses separately from the negative pulses. The compu-
tational results are seen in Figures 6. 11-6. 14 where the criterion

function is plotted against the mean lead time, T .

Three of the four curves, Figures 6. 11, 6.12, and 6. 14
show- strong minimums more than 500 milliseconds after the actual
pulse initiation. The mean pulse width is approximately 1.4 seconds.
Thus it is possible that the operator selects the amplitude and width
while the pulse is being generated, A model which would reflect this
type of behavior w-ould require a preview- model to determine in what
direction and at what rate to move the control stick in advance of the

decision as to the final amplitude and width. A model of this type
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could be constructed by utilizing four PDE's two for preview- and

two for precise control.

TABLE 6.1

Optimal Coefficient Values For The
Pulse Amplitude and Pulse Width Models

Coefficient Pulse Amplitude Puise Waidth
Model Model
+Pulses -Pulses +Pulses -Puises
a_ 20jb -16. 7 0.897 0.774
a -0.224 0.771 -0. 001 -0.011
a, V. 242 0. 701 -0.33 0.012
a, 0. 037 -1.115 0.0l6 0.030
a, 0. 084 -0.535 0. 017 -0. 006
a 1.362 1.54Y -0. 03y -0.001
a_ 2.509 -1. 066 -0. 108 0. 007
57 4,301 1.123 -0.030 -0.018
ag 0. 487 -1.854 u. 062 0. 002
a, -1.434 0. 475 0.102 0.010
2, -4, 812 -. 3466 -0.11y 0.070
a -1. 660 0. 668 -0.072 -0, 027
a, 4, 655 -2.308 -0.016 0. 050
a, 1. 403 0.030 0.096 -0.0901
al, 1.486 -3.009 0. 001 -0.007
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In all four curves, there are minimums near the actual pulse
initiation (7 =0). If these minimums are selected rather than the ones
occuring well after the pulse initiation a simpler model is obtained.

These results are summarized in Table 6.2.

TABLE 6.2
Polarity T S
of Pulse (sec) min
Pulse Amplitude PDE + 0.150 59
- -0.075 157
Pulse Width PDE + -0.075 | 155
- | +0.050 111

The optimal PDE coefficient vectors are shown in Table 6. 1.
The effectiveness of the models may be seen from the plats of model
output versus the actual event magnitude, Figures 6. 15-6, 17. As
in the previous chapter, the positive pulse amplitude model
correlates better with the experimental data than does the negative
pulse amplitude model. The criterion function had values of 59 and
157 for the positive and negative pulses respectively. It w-as
hypothesized in section 5. 4. 1 that this asymmetry resulted from the

use of separate muscle groups for the two directions of hand motion.
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The pulse width scatter plots, Figures 6. 16 and 6. 17 are also
asymmetric, the criterion function values are 157 and 111 for posi-
tive and negative pulse events respectively. This is just the reverse
of the pulse amplitude model results. Further study is required to

evaluate this phenomena.

The negative pulse amplitude PDE and the positive pulse
width PDE sample the Operator Input 75 miiliseconds after the pulse
is initiated.

This results in a more complex model than is desired here,
as another set of decision elements must determine in what direction
the control action is to be started. A compromise might be
achieved by causing all of the PDE's to sample 50 milliseconds
prior to the pulse initiation. Whether the compromise is necessary
depends on the goals of the study. The goal here is to utilize deci-
sion elements to model discrete human operator behavior. Either

type of model could be constructed.

6. 8 Pulse Initiation Model

It was hypothesized that the decision to initiate a pulse
occured when the event trajectory crossed a decision surface in the

space formed by e, ¢, ¥, 8. This is easily modeled by an MSDE.
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In Chapter 5 an MSDE was used to model the decision to ini-
tiate a pulse, The structure of the MSDE and the selection of the
components of the input vector w-ere based on an inspection of typical
phase plane trajectories. The dimensionality of the task at hand
precludes the use of graphical or intuitive methods for selecting the
shape or even the approximate starting positions of the decision

surfaces.

The MSDE must locate regions of the phase space w-hich are
associated w-ith pulse initiations. The MSDE's input vector is
derived from the Operator Input time history w-hich is generated by

the scanning and signal processing system shown in Figure 6.9.

The MSDE actually makes two decisions. The first is the
decision to initiate a pulsatile control action, the second is the selec-
tion of a pulse polarity. Two MSDE's can be used, one to initiate
positive pulse events and the other to initiate negative pulse events.

It is possible to add more decision elements to initiate pre-

programmed pulse sequences.

The MSDE described below- w-as identified using the time

history of the Operator Input prior to negative pulse events. A com-
plete study w-ould require the identification of another MSDE for

positive pulse events. Only one of the MSDE"Ss is identified here, and

it is assumed that the other could be identified by the same procedure
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6. 8. 1 An MSDE Pulse Initiation Model

An MSDE containing three hyperplanes is shown in Figure

6. 18.

08 o0p0d 00008
™

Operator
Input

). h

n

out of J—1}

3

Z |

:

Figure 6. 18 Pulse Initiation MSDE



146

If the MSDE models the operator's covert decision, then its
output should lead the actual time of initiation. The variation of the
lead times should be a minimum. This formalized by defining

N-M
1
TAVE © N-W L & - tnd (6-3)

- mi
i=I1

where t, and tmi are the times of the actual pulse initiation and the
model output respectively, N is the total number of pulse events
studied. If no output is produced before the actual pulse initiation is
reached, the pulse has been missed and M is the total number of such

pulses. The criterion function is:

Kz N-M ,
R (t, -t ) +K.M (6. 6)
i mi 3

D=K| Tave "N M —

The second term is the variance of the lead times. A numerical
value of @ is obtained for particular values of the MSDE's coefficient
vector, a, by applying the successive samples of the input vector to
the MSDE until one of two things occurs. Either the MSDE generates
an output, in w-hich case tmi is recorded, or the time of the actual
initiation is reached in which case M is incremented. The transient
input vector is not scanned continuously. As soon as the MSDE

generates an output, the scanning is stopped and resumed at the end

of the pulse event being studied.
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The procedure is summarized in Figure 6.19.

Stick
Displace-
ment Scanning
Resumed
MSDE
Output
/ /
——j c \ \
Ft
‘ fmitl Yl =

Figure 6. 19 Scanning Procedure For MSDE Identification

Approximately 20% of the pulses w-ere separated by less than
200 milliseconds. In those cases scanning was begun 30 samples
prior to the actual time of initiation. The results of the preceding
chapter indicate that these pulses are probably part of pre-:
programmed sequences. A decision element w-hich models both
times of initiation and the number of pulses in the sequence is too
complex to be considered here. The development of such models

represents a necessary extension of this work.

6.8.2 On The Decoder

In Chapter 5, the structure of the pulse initiation MSDE,

including the decoder, was determined from a priori know-ledge which
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w-as summarized in Figure 5. 15. Since this is not possible here,
an n out of N binary element is used. It is not possible to determine
the best value of n beforehand, consequently systematic search is

used.

Some intuitive feel for the effect of n on the resultant decision
space generated by the MSDE may be obtained by considering a two
input, tw-o decision surface MSDE. In Figure 6.20a, two decision
surfaces are show-n, N=2. If n=I| out of 2, the MSDE produces an
output when the event trajectory is above either of the decision sur-
faces, as shown by the shaded area in Figure 6.20b. If n=2 out of 2,
the MSDE produces an output w-hen the event trajectory is above

both surfaces, as shown by the shaded region in Figure 6.20c.

The choice of the parameter n has a major effect on the

resultant decision volumes mechanized by the MSDE.

6. 8. 3 Computational Results

Starting values for the coefficient vector, a, w-ere obtained
by testing 1000 sets of 15 uniformly distributed random numbers

between -1 and +1. Those yielding the lowest criterion function

were used as starting values for the adjustment algorithm.
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decision
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b) nt 1 (OR gate) c)n =2 (AND gate)

Figure 6.20 Effect Of The Decoder Parameter, n

The weighting factors, K1 , K, and K3 appearing in the

2

criterion function, equation 6.6, were selected such that all three

terms contributed equally to its magnitude.
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The computational results are summarized in Table 6. 3.

TABLE 6.3

o | potosca muenta | ) T Ve
 I— —

1 % * 3.

2 2 27 558

2 | 2 27 568

2 2 28 550

3 4 31 1295

3 4 28 1357

3 2 35 2314

% 1400 sets of random coefficients produced no acceptable starting
conditions.

As seen in Table 6. 3, optimal results are obtained for n=2.
Except for small differences in the lead time and variance, the
results are almost identical. The lead time distribution functions
are plotted in Figure 6.21. A large peak is observed in all three
functions 30 samples prior to the actual pulse initiation. This re-
sults from artificially extending the Operator Input records of
pulses spaced less than 200 milliseconds apart. The decision
element produces an output as soon as scanning is resumed, on the

first sample of these 30 sample sequences. This is a further
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argument that these pulses are part of preprogrammed pulse
sequences. These pulses may be removed from consideration by
interpolating between adjacent data points, as shown by the dotted
lines in Figure 6.21. Although all three models exhibit similar
criterion functions, the distribution function of Figure 6.21c best
approximates a normal distribution about a mean lead time of 20
samples. The final model does not accurately represent closely
spaced pulse events. Additional decision elements are required to

represent these pulses.

The resultant negative pulse initiation MSDE leads the actual
initiation of the pulse event by 500 milliseconds. This is substan-
tially longer than the lead time found in the single display experi-
ment of Chapter 5, of 200 milliseconds. This may result from the
increased complexity of the control task or the need for scanning

betw-een display devices.

Attempts w-ere made to add a fourth hyperplane to a partially
identified MSDE. No improvement over the results described above

were obtained.

6. 8.4 A Logical Pulse Initiation Model

Although the results above are technically satisfying, they do

not yield a great deal of insight into the operator's mentalprocesses.
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It is difficult to obtain a geometric interpretation of six dimensional

surfaces.

A more intuitive approach is based on the hypothesis that the
operator makes separate decisions in the two dimensional spaces
(9, é) and (e, é). An MSDE is easily constructed, as shown in

Figure 6.22. The input vectors are formed from the Operator Input

record.

1 M
w—0)
é(t) M

A
I
\_/
I
L < Z
U/

1 M
B(t) = '
20 )
o{t) ) ,

\_/
O
()
./

Figure 6,22 Logical MSDE
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The advantage in this structure is that the decision surfaces

become lines on a two dimensional phase plane.

Starting conditions for the adjustment algorithm were
obtained by random search. The computational results are

summarized in Table 6.4.

TABLE 6.4

Summary of Computation Results Using Logical MSDE Model

Number of Lead Time, T ! Variance of
Missed Pulses (# of samples) Lead Times

4 24 953

3 25 1208

2 28 1316

2 27 1437

4 26 1272

5 26 1334

The best set of coefficients are those obtained from the first
case in Table 6. 4. Using the coefficients from this case, the

equations for the decision surfaces can be written
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0.710 -1.08 T 7.0

v, ©
y, =0.318 % 0.436 t 11.0
6.7
y. = 0.4le £ 0.376 + 20.5 (6.7
3
y, = 0.08e 0.926 - 10.0
1 ify>0 :
T (y) = / (6.8)
[o ify< 0
The output of the MSDE is defined by
h=T(y)- Tly,) + T (y;) - Tly,) : (6.9)

The decision surfaces are easily drawn from these equations,

and are shown in Figure 6.23.

The comparison between the results obtained with the

original MSDE and those obtained using the logical MSDE are shown

in Table 6, 5.
TABLE 6.5
Comparison of Best MSDE Results
Number Of T (# of Variance
Missed Pulses| samples)
Original MSDE 2 217 558

Logical MSDE ll 4 24 953
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FIGURE 6.23 - Logical MSDE Decision Surfaces
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The values of T are not, in themselves, significant. The
original MSDE missed 2 pulses less and produced a smaller vari-

ance about the lead time than did the logical MSDE.

The advantages of the Logical MSDE may overshadow- the
differences in results. The original MSDE was constructed w-ithout
using a priori knowledge, and required the identification of 15 para-
meters. The Logical MSDE contained only 12 parameters, while
placing severe restraints onthe class of decision surfaces that could
be investigated. In this example, the results indicate that the re-
strictions do no significantly affect the modeling of the human opera-
tor's pulse initiation behavior. Further, know-ledge of human opera-
tor behavior allows the investigator to add dead zones to the phase
planes and, in general, extend the models. The original MSDE is

not easily extended.

6. 9 Eye Motion Decision Model

The control task selected was such that the operator required
information from both displays in order to operate the control system
Since the two displays w-ere w-ell separated the operated commutated

between them.

The commutation consisted of rapid motion betw-een and fixa-

tions on the displays. The eye motion time history may be broken
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up into four phases:
1) view-ing left display
2) view-ing right display
3) moving from left to right

4) moving from right to left

The eye motion time history was examined and the time
(relative to the start of the run) of the beginning of each phase was
determined. In all, 216 eye motion cycles, from left to right and
back again, w-ere recorded. The distribution functions of the lengths
of the four phases are shown in Figure 6.24-6.26. From these
figures it can be seen that the left fixation intervals and right fixation
intervals have similar shapes, with means ofapproximately 600
milliseconds. The transition phases are quite similar, withmeans

of approximately 125 milliseconds.

6.9. 1 An MSDE Model

The decision to initiate an eye transition is assumed to be
based on deterministic measures of the input available to the opera-
tor. If the deterministic measures take the form of decision surfaces
in the operator's input space, then an MSDE may be used to model
the decision process. The techniques described above for identifica-

tion of the pulse initiation model are also suitable for this situation.
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A thousand sets of 15 random coefficients were generated and
tested in a three hyperplane MSDE. The twenty best sets w-ere used

as initial values in the adjustment algorithm.

In all cases, the resultant MSDE produced 80% or more of its
outputs on the first sample after scanning was resumed. A typical
MSDE produced no missed eye motion events, a mean lead time of
24 samples or 600 milliseconds, and a variance of 96. The small
number of missed events and the small variance is of little conse-
quence if all of the model outputs are produced on the first sample

after scanning is resumed.

6. 9.2 A PDE Model

The length of time the operator fixated on a display varied
from a minimum of 100 milliseconds to more than three seconds.
If the onerator computes the length of time to be spent viewing the
next display, rathec than waiting until a decision surface is crossed,

a PDE model may be constructed.

The PDE model assumed that once a transition is begun, the
operator computes the fixation interval as eye motion towards the
display is initiated. As soon as the time interval is exceeded, a
transition is initiated and a new fixation interval computed. Samples

of the operator's input were obtained starting midway in the eye
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transition and proceeding for nine more samples. The PDE model

takes the form:

f. = a'x(t.l tT) (6. 10)

where f. is the length of the ith eye fixation, t. is the time at w-hich
1 1

the fixation began, a is a vector of unknown coefficients and 7 is a

time delay to be determined.

The first input vector corresponded to a four dimensional

power series: XO =1.0

X4 :e(t,lt*r)

xp2 = e(t,lt 1-)

- T
x3 e(ti+ )
x4 :e(t,lt T)

2
X5 _xl . 0.01

= 2 0.01
X, =%, . 0.
x :x2 . 0.01 (6.11)

7 3 '

2

x8 ~x4 . 0.01
x9 :xlxz- 0.01
XlO:X1X3' 0.01
X11:x1x4- 0.01
x12:)§x3. 0.01
x13:x2x4- 0.01

X14 = x3x4 + 0.01
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For fixed values of 7, the optimal coefficient vector, a, and
the resultant value of the criterion function w-ere computed by the
procedure described above in Chapter 4. The results of this compu-
tation for RIGHT fixation intervals are presented in Table 6. 6. The

LEFT fixation intervals could be modeled in the same way.

TABLE 6.6
(samgles) g

0 . 082
1 . 084
2 ' . 084
3 . 083
4 . 083
5 . 083
6 . 081
T . 081
8 . 082
9 . 081

Varying 1 does not affect the results significantly. Since
7= 0 produces a simple model, this value w-as selected as the

optimal value. A scatter plot of the model eye fixation lengths,
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versus the actual eye fixation lengths is found in Figure 6.27. This
plot shows rather good correlation between the model and the actual
lengths for short fixations. When the actual fixation length is greater
than 800 milliseconds the model generated intervals of approximately
800 milliseconds. Attempts to remedy this situation by including
squares, cubes, and inverse terms in the input vector produced no

significant improvements in the model responses.

The scatter plot shown in Figure 6.27 is clearly based by the
large number of long fixation intervals, which the model is incapable
of generating. In order to determine the effectiveness of the model
on short fixation intervals, a computer run was made w-hich deleted
all events with fixation intervals greater than 800 milliseconds. The

scatter plot which resulted is shown in Figure 6. 28.

The criterion function, the variance of the model error, w-as
reduced from 0. 082 to 0.008. This corresponds to a standard
deviation of 90 milliseconds, The scatter plot exhibits good correla-

tion between the model output and the actual fixation time.

6.9.3 Dual PDE-MSDE Model

As soon as an eye motion interval is over, the operator
begins commutating towards the other display. Halfway between the

two displays, or possibly before if peripheral vision is utilized,
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both display variables and their rates are available to the operator.
Based on the available signals the operator determines how much
time to allocate to the new display. At the end of this time the
process is repeated, It seems apparent from the results described
above that the decision concerning the amount of time to allocate to
the new display is made by at least two processes. One decision
process is used when rapid scanning is required and another decision
process is used when more leisurely scanning w-ill suffice. The

resultant model structure is shown in Figure 6.29.

#1
‘ -
. : >
| length of
x(t) ¢ N PDE ' o fixation
#2 ' time
}
|
1
|
‘—>3 - MSDE -- -

Figure 6.29 Dual PDE MSDE Eye Motion Model

An examination of the tracking record led to the hypothesis
that "leisurely® tracking occurs in portions of the phase space w-here

the generation of a pulse is unlikely. The results of the previous
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chapter indicated that the operator did not initiate output pulses in
the second fourth quadrants of the e, € phase plane. Further, where
e, é, 6 and 8‘ are all sufficiently small, the operator does not
initiate any pulsatile events. W.ith this hypothesis in mind, the
tracking records were examined. It w-as found that long fixation
intervals occurred while the trajectory was inside the second and

fourth quadrants if 8 was large.

The MSDE used to determine w-hether the long or short fixa-

tion model was to be used is shown in Figure 6. 30.

For fixed values of r_ and r

1 5 the values of the inputs, 8, 6,

e and é determine the output of the MSDE. This, in turn is used to
determine w-hich model the fixation interval is to be generated by.

The tw-0 groups of fixation intervals are then modeled by a PDE.

This procedure yields two criterion functions and two

scatter plots for each value of ry and ry selected. An overall

criterion function may be defined as:

NL¢ +NS¢S
N. +N

-

g = (6. 12)

S

.
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Figure 6. 30 MSDE for Dual PDE, MSDE Eye Motion Model

where NL and NS are the number of events sorted into the long and
short model groups, ¢Land Q)S are the criterion functions obtained
for v = 0 for the long and short events respectively using the input

vector defined in equation 6. 4.
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TABLE 6.7
@(r1 . rz)
r.o=
4 8 12 16 20

5 . 077 . 062 . 066 . 069 . 070
10 . 075 . 060 . 063 . 067 . 068
r 15 . 074 . 059 . 062 . 066 . 067
20 .074 . 059 . 062 . 066 . 067
25 . 074 . 060 . 062 . 066 | . 067

Table 6. 7 summarizes the results obtained from a systematic
study of ry and r,. As can be seen from the table, the optimal
parameter values are ry= 8.0 and ro = 15.0. Table 6.8 presents

the optimum PDE coefficients.

The overall criterion function is 0. 059 w-hich is considerably
better than the criterion function of 0. 082 obtained using a single
PDE. The separation of long fixation intervals from short ones is
almost perfect, as seen from the scatter plots shown in Figure 6. 31
and 6. 32. There are 23 right fixation intervals lasting longer than
800 milliseconds, of these only 4 w-ere generated by the short

interval model.
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TABLE 6.8

Optimum PDE Coefficients

173

Coefficient
Input Components Long Interval PDE [Short Interval PDE
e — ——

1.0 -0.22 -0.011
) -0.037 -0.002
) 0.009 0.001
e -0. 025 -0.001
é 0.004 0.003
2

) 0.281 -0.015
.2

3 -0.014 -0.002
2
e -0.024 0. 006
.2
é 0. 429 -0.018
9 8 0.013 0.001
e : 0. 049 0.020
9é -0.247 0.011
8 e 0.353 -0.010
0 & -0. 050 -0.008
e e 0.018 0.013

6.9.4 Summary Of Eye Commutation Model

The scatter plots for the RIGHT fixation intervals shown

in Figure 6.31 and 6.32 indicate that the 2-PDE, MSDE model
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outputs agree well w-ith the experimental data.

It is assumed that similar results may be obtained for

LEFT fixation intervals.

The selectionof theMSDE decison surfaces was based on
intuition and an examination of the tracking records. This is an
arbitrary procedure and there may be many surfaces which will
yield better results. The purposes of this study are satisfied by
finding one MSDE. The study of more complex decision surfaces is

clearly a necessary extension of this work.

6. 10 The Complete Human Operator Model

The complete human operator model is obtained by
combining the scanning and signal processing element of Figure 6. 9
with the models identified in sections 6. 7 and 6. 8. The basic
structure is quite similar to the model developed in the previous

chapter, Figure 5.20.

An MSDE continuously monitors the operator's input, when
decision surfaces are crossed a pulse generation sequence is
initiated. A delay occurs during which rapid eye motions may occur.
At the appropriate times tw-0 of the four PDE's sample and hold the

amplitude and w-idth of the event to be generated, or being generated,
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as some of the sampling operations may actually occur shortly
after the initiation of the pulse. This timing sequence is summarized

in Figure 6. 33.

.. Sample and Hold
Timing of +PA PDE
PDE Samplg
¢——— 0.150 ———3] Sample
gnd H:.ld : And Hold
peration , P
Sample and andP-gA
Hold -PW PDR
- 0.050 =
¢ 0.075
\ 5 k
0.500 sec. e
Pulse Initiation Pulse Begun
MSDE Goes True Possible Compromise

PDE Sample And Hold
For AIll Pulse Events

Figure 6. 33-Timing of PDE Control Signals

For simplicity, all of the sampling operations could be combined at
0. 050 seconds prior to the pulse initiation. This avoids the problem
of deciding how- to generate a portion of the output event before the
amplitude or w-idth has been selected. While this problem is not
insoluble, a model which included this behavior would be unneces-
sarily complex. It remains for further studies to evaluate this

aspect of the computational results.

The complete eye motion model is shown in Figure 6. 34.
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I Transition MSDE

LEFT
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PDE

>

RIGHT
SHORT
PDE

Figure 6. 34 Eye Motion Model
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A bistable element is used to determine w-hich display is
being viewed and selects which input is to be used for timing.
The timing signal, t, resets to zero when the flip-flop changes
state and increases linearly w-ith time. When the t input is equal to
the output of the selected PDE the MSDE generates an output w-hich
initiates a transition. The transitions are assumed to be of constant
duration, 100 milliseconds. The output of the flip-flop operates

the scanner and signal processor of Figure 6. 9.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Conclusions

The main objective of this dissertation has been the develop-
ment of a class of discrete elements suitable for configuring models
for the discrete control behavior exhibited by human operators.

The Multi-State Decision Element (MSDE) and the Proportional
Decision Element (PDE) were developed to meet this objective.
That the two elements are general purpose w-as demonstrated by
synthesizing and identifying two complete models for two different
types of discrete control behavior. The model synthesized in
Chapter 5 contains probably the first completely identified input
dependent sampling model for a human operator performing manual
control. Chapter 6 describes a deterministic model for the visual
scanning behavior of human operators performing manual control

with two coordinated displays.

Both models were based on results from a single, well-trained
operator. Consequently, it is not possible to interpret particular

numerical results; for example, the asymmetry of side arm

178
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control motions observed in Chapters 5 and 6. The models do
demonstrate the versatility and adaptability of the PDE and the MSDE

and their associated identification algorithms.

7.2 Recommendations For Future Work

There are two separate areas in w-hich this dissertation is
deficient. The first area is the modeling of pulsatile operator con-
trol actions w-hich are generated as part of preprogrammed pulse
sequences. The second area is the application of the discrete
elements to the identification of sampled data human operator models

when the operator's output is not discrete.

Substantial evidence was found in Chapters 5 and 6 for the
existence of preprogrammed pulse sequences. Both models were
unable to generate closely spaced pulses and consequently failed to
describe approximately 20% of the operator's control actions
accurately. An asynchronous finte state machine containing threshold
elements and memory elements (flip-flops)was utilized by Bekey
and Angel [ 47 to study the generation of preprogrammed pulse
sequences. Pattern recognition techniques were utilized by Gould

[ 11} to generate two pulse sequences for certain controlled elements,

If the output of the model synthesized in Chapter 5 was

assumed to be the force developed by an operator's muscles, then
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a continuous filter (representing arm dynamics) could be added at
the output of the model. The result could be used to investigate the
internal discrete behavior of human operators in continuous output

situations.

Another area of extension lies in the development of models

for visual scanning behavior in more complex control tasks.
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